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Abstract 
 

The accurate simulation of powder compaction involves many different areas in 

computational mechanics, where appropriate elastoplastic constitutive model, finite 

deformation framework, enforcement of contact, friction conditions and robust numerical 

methods are some of the requirements demanded in this simulation. The modified Drucker-

Prager Cap (DPC) elasto-plastic constitutive model is used for the calculations that performed 

using the finite element code ABAQUS 6.4, to simulate densification of alumina powder 

using cold die pressing. A comparison of the experimental and theoretical density distribution 

shows that there is a good qualitative agreement in the sense that both produce the important 

maximum and minimum density regions accurately, despite the overall density distribution of 

present work is slightly underestimated experimental data. 

 

Introduction:  
 

In recent decades, a substantial amount of research and development has been conducted 

in different areas and significant technological advances have been made. Scientists have been 

trying to find appropriate models that can describe the characteristics of different kinds of 

powders and predict the behaviors of the powder precisely during the manufacturing process 

for the industry. It is of great significance because this will bring more economic effects to the 

industry and engineers can control the particle compaction
 
[1]. 

One of the most important production routes for powder metal or ceramic parts is uniaxial 

die pressing and sintering. Although complex parts can be produced but it is not possible to 

achieve a homogeneous green density distribution by die compaction
 
[2]. The more or less 

inhomogeneous in density is depending on the; part geometry, the tool design and the friction 

between powder and die wall. Since the part undergoes shape distortions during sintering, or 

cracks may develop, and the correction of shape distortions by hard machining is expensive 

and the tolerance requirements are often extremely high, it may be a costly and time-

consuming process to find a tool design and a pressing schedule giving good parts within the 

required tolerances, so the alternative way is to optimize the process by computer simulation 

[3,4]. 

 

Modified Drucker-Prager/Cap Model: 
 

The yield surface of the modified Drucker-Prager/Cap plasticity model includes two main 

segments: A shear failure surface, providing dominantly shearing flow, and a “cap,” which 

intersects the equivalent pressure stress axis (Fig.1) [5]. Inside the yield surface, the powder 

behaves elastically. If the stress state reaches the yield surface, the powder deforms plastically 

[6]. The density increases, if the stress state is on the cap, whereas it decreases (dilatation), 

when the stress state reaches the failure line. Dilatation implies softening, so that strain 

localization and cracking may occur. 
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There is a transition region between these segments, introduced to provide a smooth 

surface. The cap serves two main purposes: it bounds the yield surface in hydrostatic 

compression, thus providing an inelastic hardening mechanism to represent plastic 

compaction, and it helps to control volume dilatancy when the material yields in shear by 

providing softening as a function of the inelastic volume increase created as the material 

yields on the Drucker-Prager shear failure and transition yield surfaces [7].  

  

 
Fig.1: Modified Drucker-Prager/Cap model: yield surfaces in the p-t plane [5]. 

 

The model uses associated flow in the cap region and non-associated flow in the shear 

failure and transition regions. 

The linear strain rate decomposition for time independent is assumed, so that 
plel ddd    (1) 




d

dG
ddDd el 

1
 (2) 

where d  is the total strain rate, eld  is the elastic strain rate, and pld  is the inelastic 

(plastic) time-independent strain rate. elD  is the elastic matrix, G  is plastic potential and, d  

denotes a proportionality constant termed the plastic multiplier. In equation (2) the elastic 

strain increment is related to the stress increment by the elastic matrix which depends only on 

the current state of stress.  

The elastic stress-strain matrix elD  for isotropic axisymmetric materials is given from the 

generalized Hooke's law using the Young's modulus and the Poisson's ratio [8]: 
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The yield surface for the Drucker-Prager/cap model is represented in Fig.1 [5]. It consists 

of sF  (the shear failure (yield) line), cF  (the cap yield curve) and tF  (a transitional yield 

curve for smoothening between cs FF &  ). The shear yield line [9] is: 

  0tan  dpqFs   (4) 
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where d  is the material cohesion, and   is the material friction angle. The plastic flow along 

the shear failure line is non-associative. Plastic hardening occurs when the powder compact 

yields on the cap. As the material hardens, the cap curve expands gradually from the dashed 

curves to the solid curve as illustrated with a dashed arrow line in Fig.2. The shape of the cap 

is controlled by a shape factor R (0<R<1) and a transition parameter   (typically 

05.001.0  ). 

 
Fig.2: Schematic of flow for the modified Drucker-Prager/cap model in p-q space [10] 

 

The cap surface hardens or softens as a function of the volumetric plastic strain, having 

two different effects, when yielding on the cap the volumetric plastic compaction causes 

hardening, while volumetric plastic dilation causes softening when yielding on the shear 

failure surface [11].  

The cap yield surface has an elliptical shape and is written as [12]: 
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1

2

2






















 






aac pdR
Rq

ppF  (5) 

where ap  is an evolution parameter representing the hardening or softening driven by the 

volumetric plastic strain, and is given by: 
 

 tan1 R

Rdp
p b

a



  (6) 

 

where bp  is the hydrostatic pressure yield surface that defined the position of the cap. bp  is 

generally assumed be dependent upon the volumetric inelastic strain in

vol , such that: 
 

   cr

vol

pl

vol

in

volb

in

volbb ppp  
0

 (7) 

 

where 
0

in

vol is the initial volumetric plastic strain before compaction, pl

vol  is the plastic 

volumetric strain and cr

vol  is the creep volumetric strain.  0cr

vol  is usually assumed in an 

elastic-plastic problem. The typical cap hardening is shown in Fig.3: 
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Fig.3: Typical Cap hardening [5]. 

 
In order to ensure that the primary feature of the DPC model is not significantly modified 

by the introduction of the transition segment for the sake of numerical implementation, the 

transition segment is always relatively small by restricting the parameter   [13]. The 

transition yield line is described as: 
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where the hydrostatic pressure p , and effective stress q  can be written as: 
 

   21321 2
3

1

3

1
 p  (9) 

 

 21  q  (10) 
 

During the compaction, when the direction 1 is regarded as the axial direction and the 

direction 2,3 are regarded as the lateral directions, respectively, then 32    and 32    in 

the standard triaxial compression test [14]. 

 

Simulation Study: 
 

Verification of the model is very important particularly when the material model is 

heavily dependent on experimental data. For this purpose, we adopt a compact geometry 

designed by Aydin et al [15], and Kim [16]. Our simulation results are compared with their 

experimental results. This comparison gives the confidence of the reliability of the model 

before proceeding to simulate other geometries of concern. 

In the present work, a finite element analysis has been used to modeled the formation of 

compacted Alumina ceramic powder, during a simple compaction process. The analysis was 

performed using the finite element code ABAQUS 6.4, with modified Dracker-Prager Cap 

elasto-plastic constitutive model [5]. 

The numerical analysis of the die compaction process requires a consideration of three 

discrete parts, the compression mode, the unloading (removal of the upper punch) and the 

ejection (removal of the compacted component from the die). The loading is executed by 

incrementally increasing the punch displacement. The unloading and the ejection are executed 

by incrementally releasing the surface boundary traction developed during pressing. 
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The Drucker-Prager-Cap Parameters Determination: 
 

Coube and Riedel [17] modify, Druker Prager Cap model to describe the powder 

behavior more realistically especially with respect to crack formation during pressing, 

unloading or ejection. By their modification they showed that not only the hardening function 

ap , but also the cohesion parameters d , and material friction angle   should depend on the 

density. In the following relations, the density   and the volumetric plastic strain pl

vol   are 

alternatively used. They are related by 
 
















 lnpl

vol  (11) 

where   is the filling density. The hardening relation, the cap eccentricity and the cohesion 

parameters are described by the following empirical expressions [18]: 
 

  2

1exp1
c

a

pl

vol pcW   (12) 
 

 321 exp RRRR 
 

(13)
 

 

 pl

volddd 21 exp  (14) 
 

pl

volbb  21tan   (15) 
 

where R  is the Cap eccentricity, and the parameters W , 1c , 2c , 1R , 2R , 3R , 1d , 2d , 1b  and 2b   

are determined from experiments data fitting.  

For the compaction simulation, powder of %96  purity alumina ( 32OAl ) were used. The 

numerical values of the cohesion and, hardening parameters, are give as 84042.0W ,  

MPa 0.618941 c , 0.574692 c ,  0.558R , MPa 0.008771 d , 6.330352 d ,  2.27471 b , 

and 0.090382 b  [19]. The exact value of the cap eccentricity has an only minor influence on 

the final density distribution in many practical cases [20], so that the cap eccentricity is taken 

to be constant. 

The fill density was assumed to be uniform in the simulation. The fill density (density of 

the compact before compaction) of alumina powder is 3679.1 cmgm [16], and the theoretical 

density is 3986.3 cmgm . The transition surface parameter,  , is assumed to be 03.0  [5]. 

In this study, the cohesion parameter, and cohesion angle, are choose as a variable with 

respect to density, which differs from the approach of other studies which considers these 

parameter are constant during the compaction. The purpose behind this approach is to study 

the effect of there variability on the final result for alumina powder compaction. 

The cohesion parameter (the interaction of the shear failure line with the effective stress 

axis) with respect to plastic volumetric strain are shown in the Fig.4, and the cohesion angle 

(slope of the failure line) behavior with respect to plastic volumetric strain are shown in Fig.5. 

The hardening parameters ( ap  and bp ) are shown by the Fig.7 and Fig.8 respectively. 
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By some transformation on the equations (5) and (8), these two equations can be obtained 

respectively, which can be used to obtain the behaviour of yield function of the alumina 

powder: 
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Fig.6: Volumetric plastic strain as 

function of hardening variable ap , for 

an alumina powder. 

Fig.7: Hardening variable bp  

versus volumetric plastic strain for 

an alumina powder. 

Fig.5: Slope of failure line versus 

volumetric plastic strain for an alumina 

powder. 

Fig.4: Cohesive strength d versus 

volumetric plastic strain for an 

alumina powder. 
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From these two equations and by putting app  , the value of von mises stress can be 

obtained at ap  for two yields surfaces, and then the range of transition surface can be 

obtained, which is in the range  ADpADp aa  , , as shown in Fig.8: 

 

 
Fig.8: The range of transition surface in the modify Drucker Prager cap model. 

 

Fig.9 and Fig.10 highlights the variable nature of the yield surfaces which change its 

shape and expand during compaction (increasing the extent of the elastic region inside the 

new yield surface). For powders, the position of the pressure yield surface depends on the 

density and generally achieves a higher level as densification of the powder takes place. This 

is referred to as hardening since the powder becomes harder to yield as it becomes more 

dense. 

Kim et al. [14] verified that the Young’s Modulus, E , and Poisson’s ratio,  , are 

functions of density, such that: 
 

 ))1()1((exp 2DcDbEE    (18) 
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where GPa 406E  and 0.27  are the respective bulk properties, D  is the relative 

density of the compact, 4.938b  and 8.9438c  are curve fit parameters; The values of 

these parameters are obtained by fitting the experimental data found by others [16,21]. 
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Many numerical simulations are consider the Young’s modulus and the Poisson’s ratio as 

a constant during the process of compaction, while the experimental data shows they are 

depending on the density of the compact, by considering this approach, the properties of the 

powder will be more realistic, so it was adopted in this study.  

The variation of the Young’s modulus and the Poisson’s ratio with relative density for an 

alumina powder compact, are shown in Fig.11 and Fig.12 respectively. It is clear that the 

Young's modulus and Poisson's ratio have to be updated depending on the relative density of 

the compact. 

 
 

Computational Model: 

An axisymmetric finite element model is created in ABAQUS version 6.4, to simulate 

densification of alumina powder under cold die pressing. Finite element results were 

compared with experimental data for density distribution of compact. 

Fig.11: Variation of the Young’s 

modulus with relative density for an 

alumina powder compaction. 

Fig.12: Poisson’s ratio as a function 

of relative density for an alumina 

powder. 

Fig.9: Yield Surfaces of alumina 

powder in the range of  relative 

density  54984.0,42122.0:D  

Fig.10: Yield Surfaces of alumina 

powder in the range of relative density 

 97856.0,83566.0:D  
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In this study the third deviatoric invariant r  is not taken in to account i.e. q , 

requiring 1K  in the equation (20) which is define a deviatoric stress measure in linear 

Drucker-Prager shear failure criterion: 
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where K  is a material parameter that represents the ratio of the distance of stress points on the 

tensile and compressive meridian from the hydrostatic axis in a specific deviatoric plane of 

the yield surface. 

The material parameter which are used in compaction simulation are; material cohesion 

(8770-1.37E+06), angle of friction (66.269-65.581), cap eccentrivity (=0.558), yield stress 

(1893.7-1.00E+07), Young's modules (1.16E+09-2.85E+11), Poisson's ratio (0.255-0.267), 

and volumetric plastic strain (0-0.798) as a function of density in the range (1.679-3.73 

gm/cm
3
). The other parameters are chosen as, transition surface rate (=0.03), flow stress ratio 

(=1), initial yield surface position (=0). 

Friction coefficients between powder and die are needed for the simulation. Usually, 

Coulomb type friction laws are used, yet other relations like the Tresca law, which relates the 

shear frictional stress with the shear yield strength of the compact, were also applied [20]. The 

value of 0.2 has been used in this work for verification and simulation purposes. The same 

friction coefficient was used between the powder and die and between the powder and 

punches. 

The typical sample which used in this study is shown in Fig.13, the powder is surrounded 

by the die with a cylindrical shape. Correspondingly, a cylindrical shaped powder sample 

forms after the compaction. There are two punches acting on the top and bottom of the 

powder sample. One can assert a downward load on the top punch or an upward load on the 

bottom punch. 

 
Fig.13: Cylindrical sample apparatus for compaction. 

 

Single Acting Compaction Prediction: 

Due to the axisymmetric nature of the compaction process, it was thus only necessary to 

consider half of the vertical cross section.  

The powder was considered as deformable material, whereas the die wall and punches 

was modeled as a discrete rigid surface. The uniformed finite element mesh of 95 four-node 

axisymmetric elements CAX4R, and 120 nodes are considered, and 30 two-node 

axisymmitric rigid surface element RAX2 were used for die wall and punches. 
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The initial height of compacts mm16.37 , diameter of compacts mm2.20 , and the 

compacting pressure MPa6.38  was used [15]. The bottom of the material is immovable 

(fixed in both z- and r-directions) during compression, The top of the material moves 

vertically (in z-direction) downward during compression with velocity of min10mm , 

because of the action of top punch. The total amount of applied movement downwards, during 

compression, is the difference between the heights before compaction z , and at maximum 

applied stress  maxz . The nodes on the symmetrical axis were restricted to move in horizontal 

direction. 

 The interaction between the powder, die wall and punches were modeled by master-slave 

contacts with finite sliding. The Coulumbic friction coefficient, between the powder and tools 

was assumed to be constant, typically, a value of 2.0  was chosen. All thermal effects are 

considered to be negligible. 

Ejection was simulated by sequentially releasing the surface boundary traction developed 

during pressing. The implementation of ejection was first applied by removing the upper 

boundary condition (unloading) after the completion of the pressing. Hence, the compact 

become free to relax in the z-direction while the compact was still in the die. The removal of 

the bottom boundary condition and the die wall (ejection) followed as the last step. Finally, 

the deformed structure (green component) was obtained. 

The density distribution contour plots of the green alumina compact after the ejection, 

calculated by the finite element analysis, are presented in Fig.14, density is highest at the 

corner of contact surface between the upper punch and the die wall and lowest at the corner of 

contact surface between the lower punch and the die wall. A comparison of the experimental 

and theoretical density distribution shows that there is a good qualitative agreement in the 

sense that both produce the important maximum and minimum density regions accurately, 

despite the overall density distribution of present work is slightly underestimated 

experimental data. 

 
(a) (b) (c) 
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Fig.14: Comparison between experimental data and finite element result for the relative 

density distribution of the alumina powder compact after ejection under cold 

compaction: a.Experiment; b.FEM by Aydin et all[15], and c.Present work. 

 

A first order comparison of the experimental and numerical density variation data is 

provided, at the locations of the wall and the symmetry axis, from the bottom to top of the 

cylindrical sample, at the wall of the cylindrical alumina compact, the density increases from 

the bottom, along the axial direction, in both experimental and numerical results as shown in 

Fig.15(a), the data are quite similar. The differences between the experimental and present 

numerical density data at top and bottom edges are %395.0  and %256.1  respectively. 

Along the central line, however, axial density varies in a subtle way in the experimental 

data, while it simply increases towards the top in the numerical calculations as shown in 

Fig.15(b). The region of low density, on the centre line, at the bottom was predicted by 

present model with a difference of %099.5  from that of the experiments, and the region of 

low density on the tope are predicted with difference %218.0 .  

 
Fig.15: Comparison of the experimental and numerical density variation data; (a) at the 

locations of edge of compact; and (b) at the locations of centre of compact 

 

Fig.16 shows the axial and radial contour displacements. The axial displacement 

decreases from the top of the bed to the bottom, showing that the axial load is transmitted 

from the upper layers to the lower ones. The radial contour displacements shows two distinct 

parts: an outwards flow at the top and an inwards flow at the bottom, between these parts, the 

material remains at the same radius. However, the magnitude of the radial displacement 

remains low compared to the axial displacement. Michrafy et al [22] founds the same 

behaviors in their numerical modeling for compaction the pharmaceutical powders. 
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Fig.16: Control plot of: (a) axial and (b) radial displacements. 

 

Conclusions: 
 

For powders, the position of the pressure yield surface depends on the density and 

generally achieves a higher level as densification of the powder takes place, so that the 

Young's modulus and Poisson's ratio have to be updated depending on the relative density of 

the compact. 

A comparison of the experimental and theoretical density distribution shows that there is 

a good qualitative agreement in the sense that both product the important maximum and 

minimum density regions accurately. 
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 دراسة محاكاة لعملية تشكيل المسحوق السيراميكي

 
ئوميد غريب عبدالله 

)*(
، فاضل عبد رسن 

)**(
، طارق عبد الرضا

)***(
 

)*(
 جامعة السليمانية، كلية العلوم، قسم الفيزياء 

)**(
 جامعة المستنصرية، كلية العلوم، قسم الفيزياء 

)***(
 الفيزياءجامعة بغداد، كلية التربية )ابن الهيثم(، قسم  

 

 الخلاصة

 

و منها على سبيل من الميكانيكا الحسابية، ض المجالات المحاكاة الدقيقة لعملية تشكيل المسحوق تقتضي العديد منان 

الاحتكاك، و طرق عددية  المحدد، تاكيد على نقاط التماس، ظروفملائم، اطار التشوية تركيبي لدن -ج مرنالمثال نموذ

برنامج العناصر  الحسابات التي اجريت باستخدام المعدل في DPCلدن -نموذج مرنالتخدام اسهذا البحث في قوية. تم 

مقارنة بارد. بالكبس ال باستخدامد الالمنيوم تكثيف مسحوق اوكسيعملية محاكاة غرض ، لABAQUS 6.4المتناهية 

ان كليهما يعطي الحد الاعلى و الادنى حيث  من بينهما، اجيد اقافتاللكثافة تبين ان هناك التجريبي و النظري ين توزيعال

 .هي اقل من بيانات تجريبية نوعا ما بحثنا هذافي ان النتائج المحصلة رغم من الكثافة بدقة، بلل

 


