Effects of AgNO₃ in combination with some plant growth regulators on micropropagation of strawberry (*Fragaria ananassa* Duch)

Suha Mohamed Nasir and Muslim Abd Ali Abdulhussein

Faculty of Agriculture -University of Kufa -Republic of Iraq.

Corresponding author Email: Suham.alasede@uokufa.edu.iq

https://doi.org/10.36077/kjas/2022/140104

Received date: 8/2/2022

Accepted date: 4/4/2022

Abstract

Strawberry (*Fragaria ananassa* Duch), belong to Rosaceae family, is widely appreciated, mainly for its fruit characteristic aroma, bright red color, juicy texture, It is traditionally asexually propagated by rooted runners. To improve the strawberry varieties this method was not suitable due to incidence of many serious diseases infection resulting in the gradual degeneration of cultivars performance, so micropropagated strawberry plant has been introduced to prevent most of the plant and soil transmissible diseases. Micropropagated strawberry has several advantages, such as its ability to multiply virus free stock rapidly and, the improved capacity of these plants to produce runners for planting in the field. In this study, it was aimed to examine the interaction of BA, IBA and AgNO₃ combinations at different micropropagation stages. Results showed the addition of AgNO₃ to MS medium led to increase shoot number, shoot length, fresh and dry weight at multiplication shoots stage, shoots rooting % and root number at rooting stage. Survival plants %, plant height, leaves number and dry weight at acclimatization stage.

Keywords: Strawberry, AgNO₃, Micropropagation, In vitro

Introduction

Strawberry plant (Fragaria ananassa Duch) is belong to Rosaceae and it was able to adapts to a wide range of temperatures and spread worldwide. It grows as wild and cultivated plant and carry small fruits with height value of nutrition and cure benefits. Strawberry plant propagation in two methods, the first by sexual propagation by using seeds to produce seedlings which plant direct in soil or to produce new cultivars, the second by vegetative propagation by divided the crown plant or by runners. Results of previous studies proven there is a capability to propagate strawberry plant by using different tissue culture techniques such as using runners tip culture but this method will face trouble of browning in shoot initiation stage, which in most case led to the death of explant (15). Therefore, most of specialists try to propagate strawberry plant in tissue culture by apical meristem it considered more confidential because it saves genetic stability of cultivar and their ability to constantly renew themselves (17). Sterilization conditions are one of the basic requirements for tissue culture protocol success. Contaminants, despite their different types (fungal or bacterial pollutants), are a major source of damage to the micropropagation protocol during its various stages (initiation, multiplication or even rooting). Microbial contamination can stop or completely damage the micropropagation process, even in its early stages. Usually the plant parts are collected from the field or the greenhouse and then transported to the laboratory for superficial sterilization and then tissue culture. However, in many cases, bacterial contamination appears in advanced the stages of shoots

multiplication, which exposes the culture to damage and consequently a loss of time and effort with an economic loss (13). Silver nitrate has proved to be a very potent inhibitor of ethylene action and is widely started to use in plant tissue culture experiments. It is also having easy availability, solubility in water, specifity and stability traits make it very useful for various applications in exploiting plant growth regulation and in vitro and in vivo morphogenesis(21). According to several reports AgNO₃ influence in vitro somatic embryogenesis, enhancing shoot regeneration, shoots multiplication, root formation and reducing the ethylene hormone negative effects in several crops cultures such as potato(1), Anthurium andraeanum(3),Moringa oleifera (5),Dillenia indica(9), Citrus australasica(10) and banana(22), because of the increasing markets demand of the strawberry crop in Iraq day after day, also the lack of studies on the effect of AgNO₃ in combination with some plant growth regulators in the field of plant propagation by tissue culture, this study was carried to test the effects of AgNO₃ in different concentration on improving the characteristics of plants resulting from tissue culture.

Materials and Methods

The study was carried out in tissue culture laboratories of Horticulture and Landscape Department - Faculty of Agriculture, University of Kufa.

Culture initiation stage:

Runner tips of RubyGem cultivar were excised with the help of a sharp blade and washed 2-3 times with sterile distilled water. Surface sterilization was carried out by dipping the shoot tips into 3% Clorox (6% Sodium hypochlorate) solution with shaking for 15 minutes followed by 3-5 times washing with sterile distilled water. Surface sterilized runner tips were carefully cultured on MS medium(11) supplemented with 30gl⁻¹sucrose ,100 mgl⁻ ¹ myo-inositol with 0.5 mgl⁻¹ BAP + 0.1 mgl⁻¹ IBA in test tube, after solidified with 0.7% agar, in the presence of AgNO₃ at 0, 5 and 10 mg.l⁻¹. The medium pH was adjusted to 5.8 prior to autoclaving at 121 •C and 108 Kpa for 20 min. The culture were incubated under 16/8 h light/ dark cycle at $25 \pm 1^{\circ}$ C in a growth chamber at an intensity of 1000 lux for 3 weeks. Data about bud response (%), shoots number and length, and cultures contamination percentage was calculated at the end of the incubation period.

Shoots multiplication:

Suitable multiply shoot were transferred to new media for further multiple shoot induction. For the testing response of culture to different concentration of AgNO₃(0, 5 and 10 mg.l⁻¹), shoots were cultured on MS medium supplemented with 1 mg.l⁻¹ BAP + 0.1 mg.l⁻¹ IBA for 4 weeks and data on the number and length of shoots/culture were recorded.

Rooting of Regenerated Shoots:

For testing response of regenerated Shoots to roots formation under different $AgNO_3$ concentrations, regenerated shoots were separated and cultured on half- strength MS salts medium(2)supplemented with 0.3 mgl⁻¹ IBA with (0, 5 and 10 mgl⁻¹) AgNO₃for 4 weeks incubation period and data on rooting percentage, number of roots and length of roots were recorded.

Acclimation of micro-propagated plantlets:

Randomly *in vitro*-rooted shoots (Plantlets) of strawberry cv. RubyGem were selected for acclimatization. Plantlets with good vegetative and root groups, washed with clean water several times to remove the residue of the medium growth from the roots, which may be a source of contamination in the future, and treated with fungal pesticide Benliet (1.0 ml.l^{-1}) for 1 minute. Then each plantlet was planted in 7 cm diameter pots filled with a mixture of Peat moss, sand and perlite(1: 3 :1 v:v:v) and then irrigated with (1/4MS) solution nutrient media and the pottedplantlets were covered with transparent plastic film to prevent moisture loss and incubated. After 10 days, gradually remove the cover. After 30 days, at the end of the period of acclimation, plant survival(%)was recorded.

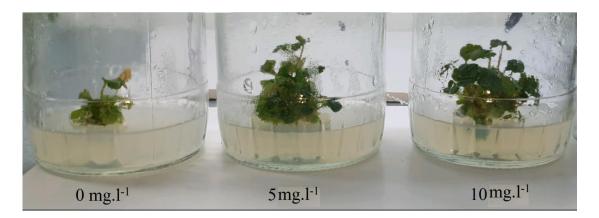
Experimental design and statistical analysis:

All experiments was carried out according to Completely Randomized Design(CRD) with one factor (three concentration of AgNO₃) with 10 replicates and collected data statistically analysis in one-way ANOVA followed by Duncan's multiple range tests, at the P(0.05), using Genstate (12th Edt.) statistics program.

Results and Discussion

Results in Table 1 indicate that the percentage of contamination of explants grown in MS media with silver nitrate in the culture tubes after surface sterilization was high in the control treatment (without adding silver nitrate), as this percentage decreased with the increase of silver nitrate concentration. The treatment with concentrations of 5 and 10 mg.l⁻¹ achieved the lowest percentages of contamination

amounted to 0%, which did not differ significantly among them. Also, the supply of the nutrient medium with silver nitrate had a significant effect on the percentage of growth buds (response rate). The same table indicated the preference of cultures grown in the MS nutrient medium supplemented with 5 and 10 mg.l⁻¹ silver nitrate its response to *in vitro* culture, in which, the response rate of shoots to growth was 90 and 100%, respectively, compared to the lowest percentage(50%)recorded in control. Also, there are significant differences in shoots number as a result of adding different concentrations of silver nitrate, as 5 mg.l⁻¹ concentration was superior in achieving the highest rate of 2.86 shoots without a significant difference from 10 mg.l⁻¹ compared with the control treatment, which achieved the lowest rate of 1.33 shoots. The results of the same table showed that adding silver nitrate had no significant effect on shoot length


Table 1: Effect of AgNO₃ on culture contamination, response and shoots initiation

$\begin{array}{c} AgNO_3\\ (mg.l^{-1}) \end{array}$	Contamination (%)	Response rate (%)	Shoot number	Shoot length (cm)
0	20.00a	50.00b	1.13a	3.17a
5	00.00b	90.00a	2.86ab	4.11a
10	00.00b	100.00a	2.09a	4.27a

Results in Table 2 and Figures 3 indicate that there were significant differences in the number of shoots, their length, the number of leaves and shoots dry weight as a result of theaddition of different AgNO₃, as the concentration 10mg.I^{-1} is significantly superior by achieving the highest rates compared to the lowest in cultures grow in MS free of AgNO₃.

Table 2: *In vitro* strawberry shoot multiplication as affected by silver nitrate addedin combination with 1 mg.l⁻¹BAP and 0.1 mg.l⁻¹IBA

$\begin{array}{c} AgNO_3 \\ (mg.l^{-1}) \end{array}$	shoots number	Plant height(cm)	Leaves number	Shoots dry weight (g)
0	4.22 b	2.02 b	11.1 b	6.50 b
5	7.72 ab	2.62 b	13.0 b	8.53 a
10	12.30a	3.06 a	16.2 a	8.89a

Fig.1. Strawberry shoot multiplication cultured on MS medium with different concentrations of AgNO3 (0, 5, and 10 mg.l⁻¹)

There were significant differences in the percentage of rooted shoots and root number according to the concentration of $AgNO_3$ used, as the shoots grown in MS

with AgNO₃s outperformed in that, while 5 and 10mg¹⁻¹ did not differ among them in the average length of roots, as shown in Table3.

Table 3: rooting, root number, and length as affected bydifferent<concentrations of AgNO3 in MS medium</td>

AgNO ₃ (mg.l ⁻¹)	Shoots Rooting (%)	Root number/shoots	Root length (cm)
0	55.00b	11.67b	2.88a
5	65.50ab	13.33ab	3.25a
10	75.00a	16.33 a	3.38a

Data in Table 4 showed that the survival (%) for plantlets produced from cultured grown in MS supplemented with 10mg was superior over all AgNO₃ concentration used in the experiment, itsshows 100% success compared to 84% of control

treatment, in addition, sameAgNO₃ achieved superior in vegetative growth characteristics of Strawberry acclimated plantlets as Plantlets height, number of leaves / plant and dry weight of plantlets.

Table4:	Survival	and	vegetative	growth	characteristics	of	strawberry
plantlets under different $AgNO_3$ after one month of acclimation							

AgNO ₃ (mg.l ⁻¹)	Plant survival (%)	Plantlets height (cm)	Leaves number / plantlets	Dry weight (g)
0	80b	6.50b	8.33b	0.088b
5 mg	85ab	7.50ab	11.33a	0.294 b
10 mg	100a	8.83a	13.11a	0.710 a

Results of this study showed that MS medium supplemented with 10 mg.1⁻¹ only increased AgNO3, not shoot proliferation of in vitro shoot tips cultured strawberry but also reduced cultured contamination and improved shoot elongation, leaf formation, root formation and elongation as well as plant survival and their good characterestics (tables 1, 2,3 and 4).Increasing the response rate and decreasing contamination due to the addition of silver nitrate, being highly effective as antifungal and bacterial agents(7), in addition to silver being one of the ethylene inhibitors, which is produced and collected in tissue culture vessels, whether caused by cultivated plant tissues or generated by the flame used to sterilize the nozzle of planting vessels is one of the factors that negatively affect the growth of cultures and their continued development which works curb later. to the multiplication of shoots(8). Also, high concentrations of ethylene increase the activity of the enzyme cellulase and pectinase or both, which leds to cell damage and thus failure of the subsequent development process (18). According to Saltveit et al. (19), the response and growth of shoots can be attributed to the presence of silver in silver nitrate, which inhibits the action of ethylene by binding to the active part of the catalytic enzymes (cellulase and pectinase), which inhibits their work and stimulates growth. The results of the experiment agree with the results of several researchers who attributed the beneficial effect of AgNO3 to its ability to ameliorate the detrimental effect(s) of ethylene on cultured plant tissues rather than inhibiting its production by the cultured plant tissues (6, 20). The results of study are similar to those of Qin, et al. (16) whoenhanced shoot regeneration

efficiency and adventitious bud formation instrawberry by the inclusion of AgNO3 in the culture medium. AgNO3 hasbeen widely, and in most cases, successfully used to overcome the inhibitoryeffects of ethylene on *in vitro* cultured plant tissues. In this study, supplementation of the culture medium with 10 mg/l AgNO3 enhanced growth and morphologicaldevelopment in strawberry shoot. Similar results were reported in anumber of agricultural plants such as, date palm (4), Dillenia indica(9), citrus (10),pomegranate(12), pistachio(14) and Lantana camara(23) in terms of the positive effect on the response of their in vitro culture and reducing contamination.

Conclusion

There were avariable effects amongAgNO₃ concentration on shoots multiplication, rooting and acclimated plantlets growth with superiore by using AgNO₃ at 10mg.l⁻¹, so we recommended using AgNO₃ in plant tissue culture laboratory for strawberry micropropagation

References

- 1. Alva-Ticona, S. and M. Oropeza.2013.Effect of culture medium consistence and silver nitrate on micropropagation of two potato (Solanum tuberosum) cultivars. Revista Colombiana de Biotecnología, 15(2):55-62.https://doi.org/10.15446/rev.colom b.biote.v15n2.41265
- 2. Ashrafuzzaman, M.;S.M. F. Faisal;D. S. M. Yadav; D. Khanamand Raihan, F.2013.Micropropagation of strawberry (Fragaria ananassa) through runner culture. Bangladesh

Journal of Agricultural Research, 38(3):467-472.

DOI:

https://doi.org/10.3329/bjar.v38i3.16973

- Cardoso, J. C. 2019. Silver nitrate enhances in vitro development and quality of shoots of Anthurium andraeanum. Scientia Horticulturae, 253: 358-363. https://doi.org/10.1016/j.scienta.2019. 04.054
- Diab, I. M.2017.In vitro propagation of the endangered date palm (Phoenix dactylifera L.) cv. Ghazal: 2-Improvement of germination and development of embryos by silver nitrate and silver thiosulfate. IOSR Journal of Biotechnology and Biochemistry (IOSRJBB), 3(4):66-74.
- Drisya Ravi, R.S., E. A. Siriland Nair, B.R.2019.The effect of silver nitrate on micropropagation of Moringa oleifera Lam. an important vegetable crop of tropics with substantial nutritional value. Physiol Mol Biol Plants 25:1311– 1322.https://doi.org/10.1007/s12298-019-00689-x
- 6. Iqbal, N.; N. A; Khan; A. Ferrante; A. Trivellini; A.Francini, and Khan. role M.I.R. 2017.Ethylene in plantgrowth, development and senescence: interaction withother phytohormones. Frontiers in Plant Science, 8:.475.

DOI:

https://doi.org/10.3389/fpls.2017.00475

7. Kim, D.H.; J. Gopal and Sivanesan.

I.2017. Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv., 7:36492–36505. https://doi.org/10.1039/C7RA0 7025J

- Kumar, P. P.; P. Lakshman, and Thorb, T. A.1998. Regulation of morphogenesisin plant tissue culture by ethylene. In vitro Cell. Dev. Biol. Plant, 43: 94-103.
- Lashin, I. I.; M. S. Aref; A. El-Kader; M. Esam; E. A. Heussin, and Ewais, E. E. D. A.2022.Antimicrobial and in vitro cytotoxic efficacy of betulinic acid from the callus, regeneration, and mother plant of Dillenia indica. Egyptian Journal of Botany, 62(1):213-226. DOI: 10.21608/ejbo.2021.81121.1706
- Mahmoud, L. M.; J. W. Grosser and Dutt, M.2020.Silver compounds regulate leaf drop and improve in vitro regeneration from mature tissues of Australian finger lime (Citrus australasica). Plant Cell, Tissue and Organ Culture (PCTOC), 141(3): 455-464. https://doi.org/10.1007/s11240-020-01803-8
- Murashige, T. and F. Skoog.1962.A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15: 473-497.
- 12. Naik, S.K. and P. K. Chand.2003.Silver nitrate and aminoethoxyvinylglycinepromote in vitro adventitious shoot regeneration of pomegranate(Punica granatum L.). Journal of Plant Physiol., 160: 423-430.
- 13. Orlikowska, T.; K. Nowak and Reed, B.

2017. Bacteria in the plant tissue cultureenvironment. Plant Cell, Tissue and OrganCulture,128(3):487–508.https://doi.org/10.1007/s11240-016-1144-9

- 14. Ozden-Tokatli, Y.; E.A. Ozudogru, and Akcin, A. 2005. In vitro responses ofpistachio nodal explants to silver nitrate. Scientia Hort., 106: 415-426.
- 15. Palei, S.; A. Kumar Das and Rout, G. R. 2015. In vitro Studies of Strawberry
 - An Important Fruit Crop: A Review. Jour. Pl. Sci. Res., 31(2): 115-131.
- Qin, Y.; S. Zhang;L.Zhang,; D. Zhu, and Syed, A. 2005. Response of in vitrostrawberry to silver nitrate (AgNO3). HortSci, 40:747-751.
- 17. Rajneesh K., and A., Manju 2005 -Clonal propagation of Nasturtium and ornamental plant through tissue culture. M.Sc. thesis, Roll No. 3030119, (Deemed University).Patiala. India.
- Salman, M. A1988. Principle of plant cell and tissue culture. College of Agriculture, University of Baghdad. Iraq.
- Saltveit, M. E.; K. J. Bradford and Dilley D. R.1977.Silver ion inhibitor ethylene synthesis and action in ripening fruits. Plant Physiol., 59(Suppl.): 45.
- 20. Santana-Buzzy, N.; A. Canto-Flick,;
 L.G. Iglesias-Andreu,; M.del
 C.Montalvo-Peniche; G. Lopez-Puc, and Barahona-Perez,
 F.2006.Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. HortSci,

41:405-409.

- 21. Sönmez, D. A., and E. Kafkas,2012. Development of in vitro methods for regeneration of strawberry 'Festival'and 'Rubygem'varieties (Fragaria× annanasa Duch.). Acta Sci. Pol., Hortorum Cultus, 11(4):129-142.
- 22. Tamimi, S. M. 2015. Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and amino oxy acetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.). African Journal of Biotechnology, 14(32): 2511-2516.
 DOI: 10.5897/AJB2015.14788
- 23. Tien, N. Q. D.; T. T. Nhan; T., Le Thi Anh, and Loc, N. H.2019.Effect of silver nitrate in combination with some plant growth regulators on micropropagation Of Lantana camara L.-A Valuable Medicinal Plant. Plant Cell Biotechnology and Molecular Biology, 20(15-16): 634-642.