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ABSTRACT 

Evapotranspiration is a main component of the water cycle and is important in crop growth. 

Monthly mean reference evapotranspiration (ETo) is estimated using gene expression 

programming (GEP) in Basrah City, south of Iraq. Various climatic data, such as air 

temperature, relative humidity, and wind speed are used as inputs of GEP model to estimate 

the values of reference evapotranspiration (ETo) given by the FAO-56 (Penman-Monteith 

equation). Nine input combinations tested with GEP are coded as model No. (1-9). Root 

relative squared error (RRSE) is taken as fitness function in each of GEP models. GEP 

models with three climatic input variables (temperature, relative humidity, and wind speed) 

take the highest level in the performance. The GEP technique was successfully employed to 

estimate ETo in the study area. The explicit formulas obtained can be used as powerful models 

for estimating the mean monthly ETo in the irrigation practices with limited climatic data. 
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 النتح المرجعي باستخدام برمجة التعبير الجيني-تخمين المعدل الشهري لتبخر

 د. علي العبودي

 قسم الهندسة المدنية، كلية الهندسة، جامعة البصرة

 صةالخلا

النتح  -النتح هو من المكونات الرئيسية لدورة المياه ومهم في نمو المحاصيل؛ تم تخمين المعدل الشهري لتبخر-التبخر

( في مدينة البصرة جنوب العراق.استخدمت بيانات مناخية GEP( باستخدام برمجة التعبير الجيني )ETOالمرجعي )

ة، وسرعة الرياح  كمدخلات لنموذج برمجة التعبير الجيني لتخمين قيم مختلفة، مثل درجة حرارة الهواء، الرطوبة النسبي

(ETO( المحسوبة بواسطة معادلة )FAO-56 , PENMAN-MONTEITH اختبرت تسع نماذج مركبة باستخدام .)

(GEP بترميز متسلسل من نموذج )9الى نموذج  1( استخدم خطأ الجذر التربيعي النسبي .RRSE كدالة موائمة في )

 ( . GEPنماذج )

( مع ثلاثة مدخلات مناخية )درجة الحرارة، الرطوبة النسبية، وسرعة الرياح( أعلى مستوى في GEPاحتلت نماذج )

( في منطقة الدراسة, وان الصيغ الصريحة ETO( بنجاح لتخمين )GEPالأداء. لقد بينت نتائج الدراسة انه يمكن استخدام )

النتح المرجعي في تطبيقات الري مع  -استخدامها كنماذج فعالة لتقدير المعدل الشهري لتبخرالتي تم الحصول عليها يمكن 

 البيانات المناخية المحدودة.
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1. INTRODUCTION 

Evapotranspiration (ET) is the combination of soil evaporation and transpiration. It is defined 

as the sum of the volume of water used per unit area by the vegetative growth in transpiration 

and that evaporation from the soil, snow, or intercepted precipitation on a given area in any 

specified time (Al-Barrak, 1964). Evaporation and transpiration occur simultaneously, and 

there is no way of distinguishing between the two processes (Allen et al., 1998). The 

evaporation power of the atmosphere is expressed by the reference crop evapotranspiration 

(ETo). ETo represents the evapotranspiration from a referenced vegetated surface; a large 

uniform grass field is considered as the reference surface. The concept of the reference 

evapotraspiration was introduced to study the evaporative demand of the atmosphere 

independently of crop type, crop development and management practices (Allen et al., 1998).  

The FAO Penman-Monteith (PM) method is recommended as the sole method for estimating 

ETo. This method is closely represented for grass ETo because there is a relationship between 

transpiration of many plants and that from grass (Kisi et al., 2013). ET is an important part of 

the water cycle (Jason A. et al, 2010). ET is a complex phenomenon as it depends on several 

climatological factors, such as temperature, relative humidity, wind speed, radiation, and type 

and growth stages of the crop. ET can be directly measured by using lysimeter, but this 

method is time consuming and requires planning of accurate (Khoshhal, and Mokarram, 

2012). Thus, indirect methods based on climatological data are suitable for ETo estimation 

(Kumar et al., 2002). 

In the recent years, the artificial neural network (ANN) approach has been used to model 

reference evapotranspiration (Sudheer et al., 2003; Kumar et al., 2002; Kisi, 2006a, 2006b, 

2007; Kumer et al., 2011; and Khoshhal, and Mokarram, 2012). Adaptive neuro-fuzzy 

computing technigue is applied for estimating pan evaporation and evapotranspiration (Kisi 

and Ozturk, 2007). Dogan (2009) applied adaptive neuro-fuzzy inference system (ANFIS) for 

estimating ETo., and Cobaner (2011) used ANFIS models for estimating ETo with weather 

input data, solar radiation, and air temperature. Genetic programming and wavelet transform 

techniques have applied for estimating ET. Traore and Guven (2013) used the gene 

expression programming (GEP) for estimating ETo using routing weather data from the 

tropical seasonally dry regions of West Africa in Burkina Faso. Cobaner (2013) presented 

wavelet transform algorithm based on discrete wavelet transform and linear regression 

techniques for conversion of class A pan evaporation to ETo.  

Inputs required for PM computations include several climate variables, such as air 

temperature, wind speed, relative humidity, and solar radiation that are not always available 

or reliable. Therefore, the use of GEP with reasonable results and with different weather input 

data it is a good idea. These models when calibrated for a specific area is a useful and benefit 

tool for estimating ETo with limited weather data and stay away from lengthy accounts of PM 

method.  Therefore, the main objective of this research is using GEP models to estimate the 

monthly mean ETo given by the FAO-56 PM equation in Basrah City, south of Iraq. Various 

input combinations of weather data are investigated using GEP models; the best combinations 

of this data is selected according to the comparison criteria, which are, root mean squared 

error (RMSE), mean absolute error (MAE), and coefficient of correlation (R). 

2. CASE STUDY   

Basrah City is located at Shatt Al-Arab River in southern Iraq. It is located between longitude 

lines (47
o
 30' and 48

o
 30') and latitude lines (30

o
 00' and 30

o
 30') as shown in Fig. 1. Basrah 

has a hot desert. Rainfall usually begins in October and continuous till May; the maximum 

rainfall values may be attended during January while it may be vanished during Summer 

http://en.wikipedia.org/wiki/Shatt_al-Arab
http://en.wikipedia.org/wiki/Iraq
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Season. During Summer Months, from June to August, Basrah is considered one of the hottest 

cities on the Planet, with temperature exceeding 45 
o
C in July. Winter frost is not unknown. 

Nevertheless, the climate is considered healthy and agreeable. High relative humidity, 

sometime exceeding 90%, due to the location of Basrah City is closely to the Arabian Gulf. 

Since ancient times, Basrah has been an agricultural area where palm trees, fruit, and 

vegetables are planted. Basrah is also known for planting tomatoes in Safwan-Al Zubair area 

(south west of center city) in winter season, which supplies the tomatoes demands of other 

Iraqi Provinces. The climate information used in this study is obtained from the 

meteorological recording station in Basrah City for the period (1991-2012). Conservation of 

existing water supplies is the first importance in the water management. To achieve this need, 

more information about evapotranspiration and irrigation requirements for satisfactory crop 

production is necessary (Al-Barrak, 1964). For purposes of timely and efficient water 

application, agricultural managers have long relied on evapotranspiration measurements or 

estimations. Therefore, an accurate assessment of ET is perquisite to improve water 

management practices (Roula Bachour, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Location of study area in reference to the map of Iraq. 

3. CALCULATION OF REFERENCE EVAPOTRANSPIRATION ETO 

The FAO Penman-Monteith (PM) method to estimate ETo can be drived as (Allen et al., 

1998). 

𝐸𝑇° =
0.408∆(𝑅𝑛 − 𝐺) +

900𝛾𝑢2(𝑒𝑠 − 𝑒𝑎)
𝑇 + 273

∆ + 𝛾(1 + 0.34𝑢2)
                                                                                  (1) 
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Where: 

ETo: Reference evapotranspiration [mm day
-1

], 

Rn: Net radiation at the crop surface [MJ m
-2

 day
-1

], 

G: Soil heat flux density [MJ m
-2

 day
-1

], 

T: Mean daily air temperature at 2 m height [°C], 

u2: Wind speed at 2 m height [m s
-1

], 

es :Saturation vapour pressure [kPa], 

ea: Actual vapour pressure [kPa], 

es-ea: Saturation vapour pressure deficit [kPa], 

Δ: Slope vapour pressure curve [kPa °C
-1

], 

γ: Psychrometric constant [kPa °C
-1

]. 

The slope of the relationship between saturation vapour pressure and temperature, Δ is given 

by 

 

∆=
4098 [0.6108 exp (

17.27𝑇
𝑇 + 237.3

)]

(𝑇 + 237.3)2
                                                                                                (2) 

 Where: 

Δ: Slope of saturation vapour pressure curve at air temperature T [kPa °C
-1

], 

T: Air temperature [°C]. 

The atmospheric pressure, P, is the pressure exerted by the weight of the earth's atmosphere; 

this value is given by following equation 

𝑃 = 101.3(
293−0.0065𝑍

293
)5.26                                                                                                                 (3)  

Where: 

P: Atmospheric pressure [kPa], 

Z: Elevation above sea level [m]. 

The psychrometric constant, γ, is given by: 

𝛾 = 0.6665 × 10−3𝑃                                                                                                                          (4) 

Where: 

P: Atmospheric pressure [kPa]. 

As saturation vapour pressure is related to air temperature, it can be calculated from the air 

temperature. The relationship is expressed by: 

𝑒°(𝑇) = 0.6108 exp (
17.27𝑇

𝑇+237.3
)                                                                                                           (5)  

Where: 

e°(T): Saturation vapour pressure at the air temperature T [kPa]. 

Due to the non-linearity of the above equation, the mean saturation vapour pressure for a day, 

week, decade or month should be computed as the mean between the saturation vapour 
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pressure at the mean daily maximum and minimum air temperatures for that period as shown 

in the following expression: 

𝑒𝑠 =
𝑒°(𝑇𝑚𝑎𝑥) + 𝑒°(𝑇𝑚𝑖𝑛)

2
                                                                                                                    (6) 

 

Where: 

e°(Tmin): Saturation vapour pressure at daily minimum temperature [kPa], 

e°(Tmax): Saturation vapour pressure at daily maximum temperature [kPa]. 

The actual vapour pressure (ea) can be calculated from the relative humidity (RH) 

𝑒𝑎 =
𝑅𝐻𝑚𝑒𝑎𝑛

100
[

𝑒°(𝑇𝑚𝑎𝑥)+𝑒°(𝑇𝑚𝑖𝑛)

2
]                                                                                                            (7)  

 

The extraterrestrial radiation, Ra, for each day of the year and for different latitudes can be 

estimated from the solar constant, the solar declination and the time of the year by: 

  𝑅𝑎 =
24 (60)

𝜋
 Gsc dr [ωs sin(ϕ) sin(δ) + cos(ϕ) cos(δ) sin(ωs )]       (8) 

 

Where: 

Ra: Extraterrestrial radiation [MJ m
-2

 day
-1

], 

Gsc: Solar constant = 0.0820 MJ m
-2

 min
-1

, 

Dr: Inverse relative distance Earth-Sun, 

ωs: Sunset hour angle  [rad], 

ϕ: Latitude [rad], 

δ: Solar declination [rad]. 

Solar radiation (Rs) is given by following formula 

𝑅𝑠 = [𝑎𝑠 + 𝑏𝑠

𝑛

𝑁
] 𝑅𝑎                                                                                                                              (9) 

Where: 

Rs: Solar or shortwave radiation [MJ m
-2

 day
-1

], 

n: Actual duration of sunshine [hour], 

N: Maximum possible duration of sunshine or daylight hours [hour], 

n/N: Relative sunshine duration, 

Ra: Extraterrestrial radiation [MJ m
-2

 day
-1

], 

as: Regression constant, expressing the fraction of extraterrestrial radiation reaching the earth 

on overcast days (n = 0), 

as+bs: Fraction of extraterrestrial radiation reaching the earth on clear days (n = N). 

 

Clear-sky solar radiation (Rso) is given by: 
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𝑅𝑠𝑜 = (0.75 + 2 × 10−5𝑍)𝑅𝑎                                                                                                           (10) 

 

Where: 

Z: Station elevation above sea level [m]. 

The net shortwave radiation (Rns) resulting from the balance between incoming and reflected 

solarradiation is given by: 

 

𝑅𝑛𝑠 = (1−∝)𝑅𝑠                                                                                                                                    (11) 

 

Where: 

Rns: Net solar or shortwave radiation [MJ m
-2

 day
-1

], 

α: Albedo or canopy reflection coefficient, which is 0.23 for the hypothetical grass reference 

crop [dimensionless], 

Rs: The incoming solar radiation [MJ m
-2

 day
-1

]. 

 

Net longwave radiation (Rnl) is given by the following formula: 

 

𝑅𝑛𝑙 = [
(𝜎𝑇𝑚𝑎𝑥,𝐾

4 + 𝜎𝑇𝑚𝑖𝑛,𝐾
4)

2
] (0.34 − 0.14√𝑒𝑎) (1.35

𝑅𝑠

𝑅𝑠𝑜
− 0.35)                             (12) 

 

Where: 

Rnl: Net outgoing longwave radiation [MJ m
-2

 day
-1

], 

σ: Stefan-Boltzmann constant [ 4.903 10-9 MJ K
-4

 m
-2

 day
-1

], 

Tmax,K: Maximum absolute temperature during the 24-hour period [K = °C + 273.16], 

Tmin,K: Minimum absolute temperature during the 24-hour period [K = °C + 273.16], 

ea: Actual vapour pressure [kPa], 

Rs/Rso: Relative shortwave radiation (limited to ≤ 1.0). 

 

The net radiation (Rn) is the difference between the incoming net shortwave radiation (Rns) 

and the outgoing net longwave radiation (Rnl) as followed: 

 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙                                                                                                                                   (13) 

 

Finally, soil heat flux density [MJ m
-2

 day
-1

] (G) for monthly period: 

 

𝐺𝑚𝑜𝑛𝑡ℎ,𝑖 = 0.14(𝑇𝑚𝑜𝑛𝑡ℎ,𝑖 − 𝑇𝑚𝑜𝑛𝑡ℎ,𝑖−1)                                                                                      (14) 

 

Where: 

Tmonth,i : Mean air temperature of month i [°C], 

Tmonth,i-1 : Mean air temperature of previous month [°C]. 
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4. GENE-EXPRESSION PROGRAMMING 

Gene-expression programming (GEP) is a new evolutionary artificial intelligence technique 

developed by (Ferreira, 2001). GEP is the natural development of genetic algorithms (GAs) 

and genetic programming (GP). GEP uses the same kind of diagram representation of GP, but 

entities evolved by GEP are the expression of a genome (Ferreira, 2001). The genome or 

chromosome consists of a linear symbolic string of fixed length composed of one or more 

genes. The basic difference between these algorithms is the nature of the individuals. In GAs 

the individuals are symbolic string of fixed length (chromosomes), while in GP the 

individuals are non-linear entities of different size and shapes (parse trees), but in GEP the 

individuals are encoded as symbolic strings of fixed length (chromosomes) which are then 

expressed as non-linear entities of different size and shapes (expression trees). GEP genes are 

composed of a head and a tail. The head contains symbols that represent both functions and 

terminals, whereas the tail contains only terminals. The major types of terminal sets contain 

the independent variables of the problem. Table (1) shows terminal sets in the present 

research. After generation the initial population, each individual is then expressed, and its 

fitness is evaluated using one of the fitness function equations.  According to fitness and the 

luck of the roulette, individuals are selected to be replicated. After selection process, the 

individuals are reproduced with some modifications performed by the genetic operators. 

Genetic operators, such as mutation, transposition and insertion sequence elements, and 

recombination are used for these modifications. The new individuals are then subjected to the 

same process of modification, with advances the search process, starting from the initial 

population toward the final population containing the desired optimal solution (Ferreira, 

2001a, b).  

 
Table 1. Input set for gene-expression programming models 

 
Model No. Input set Model No. Input set 

1 
MAX AIR TEMP, RELATIVE 

HUMIDITY  , WIND SPEED 
6 

WIND SPEED, MIN AIR 

TEMP, RELATIVE 

HUMIDITY 

2 
MIN AIR TEMP, MAX AIR 

TEMP 
7 

MAX AIR TEMP, RELATIVE 

HUMIDITY 

3 
MEAN AIR TEMP, MAX AIR 

TEMP, RELATIVE 

HUMIDITY 
8 

WIND SPEED, RELATIVE 

HUMIDITY 

4 
MEAN AIR TEMP, MAX AIR 

TEMP, RELATIVE 

HUMIDITY , WIND SPEED 
9 

WIND SPEED, RELATIVE 

HUMIDITY, MIN AIR TEMP, 
MAX AIR TEMP 

5 
MIN AIR TEMP, WIND 

SPEED 
  

 

5. METHODOLOGY 

In the present study, the data of the monthly mean air temperature (MEAN AIR TEMP), 

maximum air temperature (MAX AIR TEMP), minimum air temperature (MIN AIR TEMP), 

relative humidity (RELATIVE HUMIDITY), and wind speed (WIND SPEED) at 2 m above 

the ground surface in the Basrah City, south of Iraq, are used as inputs to GEP model to 

estimate the values of reference evapotranspiration (ETo) given by the FAO-56 PM equation. 

DTREG (Predictive Modeling Software) (Phillip H. Sherrod, 2003) is used in the present 
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research. Nine input combinations tested in the study area with GEP are coded as Model No. 

(1-9) (see Table (1)). In the present research, the root relative squared error (RRSE) (Eq. 15) 

is taken as fitness function. This is based on the square root of the residual variance of the fitted 

model divided by the initial variance. Initial variance (Eq. 16) is the variance (Eq. 17) for the 

training data set using the mean value of the target variable as the predicted value for all rows. All 

fitness functions compute fitness scores that range from 0.0 to 1.0. A fitness of 0.0 means the 

model fits very poorly; it is worthless or not viable. A fitness score of 1.0 means the model fits the 

data perfectly. The first step in the GEP model building process is to create an initial population 

with a random set of functions and terminals. The population size in the present models is equal to 

50; this is the number of chromosomes in the population being evolved. Usually a population size 

in the range of 30 to 80 chromosomes works well (Phillip H. Sherrod, 2003).  Model building 

parameters used in this study were given in Table (2). For each model, root mean squared 

error (RMSE) (Eq. 18), Mean Absolute Error (MAE) (Eq. 19), Correlation between actual and 

predicted value (R) (Eq. 20) are used as evaluation criteria.  

    

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1 + √ variance
initialvariance

                                                                                                    (15) 

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑇𝑖

𝑁

𝑖=1

− 𝑇̅)2                                                                                                  (16) 

 

 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑃𝑖 − 𝑇𝑖)2

𝑁

𝑖=1

                                                                                                               (17) 

    

Where: 

𝑇̅: The mean value of the target variable, 

Pi : The predicted value for row i , 

 Ti: The actual target value, 

 N : The number of rows in the training data set. 

 

Table 2. Model building parameters of GEP 

 

Parameter Value Parameter Value 

Population size 50 Max. generations 2000.0 

Max. tries for initial population 10000 Gen. without improvement 1000.0 

Gene per chromosome 5 Stop if fitness reaches 1.000 

Gene head length 8 Fitness function RRSE 

 

 

𝑅𝑀𝑆𝐸 = (
∑ (𝑌𝑗−𝑌̂𝑗

𝑛
𝑗=1 )2

𝑛
)

1

2                                                                                                    (18) 

 

𝑀𝐴𝐸 =
∑ |𝑌𝑗−𝑌̂𝑗|𝑛

𝑗=1

𝑛
                                                                                                             (19) 

 



Kufa Journal of Engineering, Vol. 8, No. 1, 2017              45 

 
 

𝑅 =
∑ [(𝑌𝑗−𝑌̅)(𝑌̂𝑗−𝑌 ̅̂)]𝑛

𝑗=1

[∑ (𝑌𝑗−𝑌̅)
2

∑ (𝑌̂𝑗−𝑌 ̅̂)
2𝑛

𝑗=1
𝑛
𝑗=1 ]

1/2                                                                                          (20) 

Where: 

Y and Ŷ : The observed and estimated values respectively,  

n : The number of observations, 

 Y̅and Y ̅̂: Mean of observed and estimated values respectively. 

6. RESULTS AND DISCUSSION 

Nine input combinations tested in the study area with GEP are coded as models from No. (1) 

to No. (9). The formula and statistical performance of each GEP model is shown in Table (3).  

 

Table 3. Formulae and statistical performance of each GEP model 

    

Model 

No. 
Formulae RMSE MAE R 

1 

ETo = ((((9.4952*WIND SPEED)/RELATIVE 

HUMIDITY)+(0.2896*MAX AIR TEMP))-7.1182)+WIND 

SPEED 

0.4766 0.3473 0.9942 

2 
ETo = (((-0.1669)*(MAX AIR TEMP+ (10.6884)))+(MAX 

AIR TEMP/Sqrt(159.2888/MIN AIR TEMP)))-0.4782 
1.3250 0.9925 0.9548 

3 

ETo = (((152.6635*((Sqrt(MEAN AIR 

TEMP)+14.5235)*(1.9101/ 

MAX AIR TEMP)))/RELATIVE  HUMIDITY)-

6.8959)+(0.3826*MEAN AIR TEMP) 

 

1.1782 0.8452 0.9644 

4 

ETo = (Sqrt(MEAN AIR TEMP+7.8913)-7.915)+((MAX  

AIR TEMP/Sqrt(RELATIVE HUMIDITY))+WIND 

SPEED) 

 

0.4326 0.3349 0.9953 

5 

ETo = (0.33*(MIN AIR TEMP-1))+(11.8244/MIN AIR 

TEMP)+WIND SPEED+(0.1589*(MIN AIR TEMP-

38.5756)) 

 

0.7639 0.6182 0.9856 

6 

ETo = ((WIND SPEED+(MIN AIR TEMP/Sqrt(RELATIVE 

HUMIDITY)))-3.4022)+(0.1891*MIN AIR TEMP) 

 

0.6064 0.4723 0.9914 

7 

ETo = (((-0.8818)*Sqrt(MAX AIR TEMP))/RELATIVE 

HUMIDITY)+3.6097+((4.9292*(MAX AIR 

TEMP+2.4646))/RELATIVE HUMIDITY)+((-

0.0698)*(51.3584-MAX AIR TEMP)) 

1.1532 0.8433 0.966 

8 

ETo = (WIND SPEED+(296.2335/RELATIVE 

HUMIDITY))-4.7581 

 

1.0599 0.8183 0.9713 

9 

ETo = ((0.6765*Sqrt ((0.7232*WIND SPEED)/RELATIVE 

HUMIDITY)*MIN AIR TEMP) +Sqrt (5.0858*WIND 

SPEED) +Sqrt (1.9498*MAX AIR TEMP))-8.8232 

0.3654 0.2688 0.9966 

 

The input of the GEP model is based on available weather data in the study area; the 

performance of these models is evaluated by computing root mean squared error (RMSE), 
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mean absolute error (MAE), and coefficient of correlation (R). Different input sets may affect 

significantly the performance of model, for example, model No.2 has two inputs value, 

maximum and minimum air temperature; it underestimates the reference evapotranspiration 

given by the FAO-56 PM equation as shown in Fig. 2. Also, model No.5 has two weather 

inputs value, which are minimum air temperature and wind speed. The presence of wind 

speed with minimum air temperature increased the performance of this model as shown in 

Fig. 2. Addition of wind speed increases the model's performances by reducing RMSE by 

42.35%, and increasing R
2
 by 3.25% in comparison with model No.2. Model No.7 and model 

No.8 have two inputs (see Table 1); the performance of these models is slightly better than 

model No.2. The addition of relative humidity to temperature variable increases the 

performances of model No.7 by reducing RMSE 12.97% and increasing R
2
 by 1.17% than 

model No.2 (see Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparative plot of ETo given by the FAO-56 PM equation versus ETo estimated by GEP 

models (model No. 2, 5, 7, & 8). 
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The diversity of input variables increases the accuracy of predicted ETo. The model with input 

variables (relative humidity and wind speed) in addition to temperature variable leads to a 

significant accuracy than model with only temperature variables as models (1, 3, and 6). 

Based on above results, two climatic variables are not enough for getting a very good 

estimation of ETo. When increasing the number of input sets, such as wind speed, relative 

humidity, maximum and minimum air temperature in the estimation procedure, the GEP 

models' performance increases significantly (see Fig. 3).  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Comparative plot of ETo given by the FAO-56 PM equation versus ETo estimated by GEP 

models (model No. 1, 3, & 6). 

 

Obviously, as shown in the statistical performance of Table (3), the model No. 4 and model 

No.9 take The highest level in the performance with R equal to 0.9953 and 0.9966, 

respectively. The performance of model No.4 increases by reducing RMSE by 67.35%, and 

increasing R
2
 by 4.24% than model No.2. Also, the performance of model No.9 increases by 
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reducing RMSE by 72.42% and increasing R
2
 by 4.38% than model No.2. Fig. 4 shows the 

target and estimated monthly reference evapotranspiration for model No. 4 and 9.       
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Fig. 4. Comparative plot of ETo given by the FAO-56 PM equation versus ETo estimated by GEP 

models (model No. 4 & 9). 

7. CONCLUSION 

In this study the performance of the gene expression programming technique to estimate 

reference evapotranspiration as a function of climatic variables in Basrah City is presented. 

Nine input combinations tested with GEP are coded as Model No. 1-9. The PM reference 

evapotranspiration was calculated based on 264 months of weather data from (1991-2012). 

Climatic variables in the input sets may affect the accuracy of GEP models. The diversity of 

input variables increases the accuracy of the ETo representation. The model with input 

variables (relative humidity and wind speed) leads to a significant accuracy than model with 

only input temperature variables. The GEP models with three climatic input variables 

(temperature, relative humidity, and wind speed) such as model No. 4 and model No.9 take 

the highest level in the performance with R equal to 0.9953 and 0.9966, respectively. The 

GEP technique was successfully employed to estimate ETo in the study area. The explicit 

formula obtained can be used as convenient and powerful model for estimating ETo in the 

irrigation practices with limited climatic data. 
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