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ABSTRACT

The research presents ANN (“Artificial Neural Networks") estimation of confined peak
strength for R.C columns. The modeling of the strength of reinforced concrete columns by
uses of the (FEM) finite element method gets many difficulties, starting in geometric
representation down to nonlinearities due to loads. The use of neural networks trained well
can give us a model that can be utilized as an alternative and successful model for those
columns. Experimental sets of data for concrete of square and circular concrete columns were
gathered from many researches to develop an Artificial Neural Network formula as input data
set parameters consist of ultimate strengths, size of mainly longitudinal and ties
reinforcements, compressive concrete strength, thickness of concrete cover for reinforcement,
specimen geometric dimension, and stirrup bars spacing. Confined Peaking Compressive
Strength (CPCS) of square and circular concrete columns is predicted by neural networks
technique and sorted with analytical models and found that they are scientifically accepted.
The prediction was performed by package program (Mat Lap).

KEYWORDS: Artificial neural network; Compressive strength; Confined concrete strength;
Concrete columns
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1. INTRODUCTION

The effectiveness of various parameters was studied on the CPCS. In many studies these
analytical and empirical studies have been investigating by many researchers. Therefore many
analytical approaches have been presented for predicting CPCS for columns. These analytical
approaches were presented in the tables and references by means of stress-strain relationship
models. These analytical models can be listed in the literature by Table 1:

Table 1. Various Analytical Models have been Suggested to Predict the CPCS for
Columns Considering the Various Parameters Stated Below

e Square column : Some Analytical Models for Confined Compressive
Strength of Square Concrete Columns

Researchers Formula - strength equation
Sargin, 1971 { } ,
1+ 0.05468 |1 — 0.245
fec + [ ]\/fT fc
1 5
Yong et al., 1988 foo =K f'c} = {1 n 0.11{ 0.24 s}{ o, SSdp} f}}c/’t }flc

e Circular column : Some Analytical Models for CPCS of Circular
Concrete Columns

Mander et al., 1988 | "( foe=F'co(-1.254+2.254(1+7.94f" /f' o-2f'/f'c0)>>

where, 1= ke ps fyn /2, ke=(1-s/2d)"/(1-pcc) and

n=2 for circular hoops )"

Sakai et al., 2000 "(f'ee=F"co3.83ps Fyn

f'oe=f"'c0(0.94+4.7C)

where, C=Ks/ps fyn/(2 f'c0)] and Ks =[1-s/(d tan 30)]>0 )"

2. EXPERIMENTAL DATABASE FOR NN MODEL

Table 2 as shown below presents the data sets used from the experimental studies presented
by Mander et al. (1988b); Sakai et al. (200); and Sakai (2001). The values of the parameters
are drawn:

1. Compressive strength test of unconfined concrete for cylinder, f'c.

2. Compressive strength test of unconfined concrete specimen (similar in size and
configuration of geometry), f'co.

Diameter of confined concrete of circular column, d.

Column specimen height, H.

Yield strength of ties reinforcement, f yh .

Ratio of volume of ties reinforcement to volume of concrete surrounding by tie, ps.
Spacing between two tie bars or spiral pitch, s.

Ratio of main reinforcement to area of concrete surrounding by tie, pcc, and.

© o N o g B~ W

Peak compressive stress of concrete specimen (confined), f 'cc.



82 Luay M. Al-Shather

14 circular columns used in this research. The 6 specimens' that got from Mander et al. (1988)
are 500 millimeter in diameter and 1,500 millimeter in rise. The effective diameters of the
confined concrete area are 438 mm. All column specimens get ties (lateral) and main
(longitudinal) bars with changing diameter of bars and the spacing between tie bars. The 4
specimens presented by Sakai et al. (2000) are of 180 millimeter in diameter and having 600
millimeter in rise, and having ties and main reinforcement (ten bars having 6.35 millimeter in
diameter). The 4 tested specimens of Sakai (2001) have 300 millimeters in diameter (280
millimeter enclosed core diameters) and 900 millimeter specimen in rise. 16 main bars having
approximated diameter of 10 millimeter were tested. Column's series C1 have one to three
layers of tie reinforcement. 6 sets of experimental data tended to (square) RC column
specimens have been collected from Yong et al. (1988). Geometric and mechanical properties
of confined core of column specimens, tie reinforcement, and main bars were taken as
different values for this research. These changed values represent concrete strength obtained
from compressive strength from experimental tests, f'c , edge dimension of a cross section of
square column, b, and specimen highness, H, concrete reinforcement cover, cc, yield strength
of tie reinforcement, fyh, and main reinforcement, fyl, tie bar size, Dt, the bar diameter of
main reinforcement, DI, tie reinforcement spacing, s. The types of tie reinforcement
configuration are given in Table 3.
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Table 2. Intervals Values of Parameters in Experimental, Circular Concrete Column

&7 cc

CIRCULAR COLUMN

Specimens f'c f'co D H fyh ps % S,mm  pcc % fcc
(MPa) (MPa) mm  mm (MPa) (MPa)
Mander et al. Training set for NN
M-a 28 24 438 1500 310 20 52 1.60 38
M-b 31 30 438 1500 340 20 52 1.60 48
M-1 28 29 438 1500 340 25 41 1.60 51
M-2 28 29 438 1500 340 15 69 1.60 46
M-7 31 32 438 1500 340 20 52 327 52
M-8 27 30 438 1500 340 20 52 330 49
Mander et al. (1988b) Testing set for NN
N 1-7-2 28 29 438 1500 320 201 50 1.72 4756
Sikia et al. (2000). Training set for NN
N-la 298 246 18 600 376 057 120 1.18 29.6
N-2a 298 246 185 600 376 1.14 60 1.18  29.7
N-3 298 246 18 600 376 1.71 40 1.18 359
D-1 298 246 185 600 376 0.57 240 118 311
Sikia et al. (2000). Testing set for NN
N 1-7-2 298 246 185 600 376 0.99 152 1.18 3155
Sikia et al. (2001). Training set for NN
C1-20 194 21 280 900 363 226 20 185 354
C1-30 194 21 280 900 363 151 30 185 29.7
C1-40 194 21 280 900 363 1.31 40 185 270
C1-60 194 21 280 900 363 0.75 60 185 240
Sikia et al. (2001). Testing set for NN
N 1-7-2 194 21 280 900 363 141 38 1.85 29.10

(*) Mean that values will be constant in parametric study.
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Table 3. Intervals Values of Parameters in Experimental, Square Concrete Columns
8
I N
\ | &7
\ v
} * }
’ L 7 /s L 7
Co.1 C0.2
SQUARE COLUMN
Parameters Range

Compressive Strength of concrete from test, f'c, (MPa)

[83.64-93.5]7)
(*) [High Strength]

Edges length of cross section of square column b,
(mm)

134-152

Specimen length, H, (mm)

457 [constant]

™) the value of parameter is constant for
all study

Concrete cover thickness, cc, (mm)

0-1.27

Center-to-center of tie reinforcement, s, (mm)

25.4-152

Yield strength of tie reinforcement, fyt, (MPa)

496 [constant]

Yield strength of main reinforcement, fyl, (MPa)

424 [constant]

Diameter of transverse reinforcement, Dt

3,2 [constant]

Diameter of longitudinal reinforcement, DI

10 [constant]

Longitudinal reinforcement number at the corners, Nc

4 [constant]

Longitudinal reinforcement number at the sides, Ns Oor4

Transverse reinforcement types, CO.1-2 Oorl

Specimens  f'c b, H, cc, S fyt, fyl, Dt,DI  Nc, Output

(MPa) (mm) (mm) (mm) (mm) (MPa) (MPa)  (mm) Ns foor (MPa)

| Yong et al. Training set for NN

A 88.6 152 457 127 254 496 424 32,10 4,4 99.00

B 9350 152 457 127 50.8 496 424 32,10 44 1016

C 88.46 152 457 127 76.2 496 424 32,10 4,4 90.90

D 8446 152 457 127 152 496 424 32,10 44 83.10

N 83.64 134 457 0.00 508 496 424 32,10 4,4 90.90

L 89.77 152 457 127 76.2 496 424 3.2,10 4,0 89.00

Yong et al. Testing set for NN

A-7-1-2 88.1 141 457 1.02 50 496 424 32,10 4,4 9268

3. NEURAL NETWORK ARCHITECTURE

Acrtificial neural networks ANNSs are computer models of simulation of what happens between
nerve cells (neurons) in the nervous system of human. The neurological unit called neuron is
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the main unit in the processing of information related to the neural network model. The nerve
cell (neuron) consists of four parts as main parts can be shown in Fig. 1. The dendrites will
collect the input data as signals from other neurons and get these data to another neuron
(Ertekin Oztekin, 2012).

The process of replacing the transfer of signals using mathematical simulations, such as
replacing input paths by connection weights, important activation functions, and output paths
instead of the dendrite wires. A mathematical formulation in neuron calculates the sum of
weighted of its input sets signals by using Equation 1, and it will give output signals by using
activation function. A standard function of activation defined by Equation 2 was used in this
research. These formulas will produce outputs sets by neurons that are either used as input
data sets for next layer of neurons or used as results for final output (Andres et al., 2003 and
Ertekin Oztekin, 2012).

u, = W, X,
J Z v (1)
1lt,)=——=
S PP (2)

Where: wij  weight between neurons i and j,
Xi input for unit of neuron,
uj  summation of multi - inputs,
bj  the bias, and
f(uj) output of neuron

In this research can be use of (feed forward) multi-layer of NNs and (back propagation feed).
A feed forward of ANNSs and an artificial (neuron) can be seen in Fig. 1-a and in Fig. 1-b,
respectively.

INPUT LAYER
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Fig. 1-a. Feed forward artificial neural network.
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Fig. 1-b. Node function of ANN.

A feed forward NN with multi- layer consist of an input data layer with one or multi- hidden
layers and a targeted output layer. The input and output layers having the same numbers in
neurons of variables and outputs case, respectively. There is a real difficulty in determining
numbers of neurons and the quintets of layers in the hidden layer, and it's clear and visible in
feed forward NN studies. This determination of the number of layers and neurons would be
through the use of trial and error sequences of approach and depending on type of the
problem. Bias values and Synaptic weights values can be fed at the beginning of the training
phase of NN randomly with use of back propagation technic. After the neural network outputs
provide the NN will determine the errors by comparing the outputs obtained with the desired
outputs and returned account configuration process in the neural network to get to the outputs
of convincing scientifically. Through the back propagation of network in the process of
producing the Synaptic weights will be recalculated with new values (Ertekin Oztekin, 2012).

4. NEURON MODEL

A perceptron neuron, which uses in MATLAB Version 4.0 is hard-limit transfer function
hardlim, is shown below.

Input  Perceptron Neuron

A A+l
Where... SemTaRs

R = number of 0 i

H a :
> elements in
g —l_ input vector -1

a = hardlim(n)

\ Ll y, Hard-Limit Transfer Function

a = hardlim{(Wp+5)

w1j variable represents of the weight of each external input. The transfer function will collect
sum of the input weights.

The transfer function (hard-limit) gives the ability to classify and evaluate the input vectors to
isolate the input space available to the two regions. For example, outputs will be O if the net
value of input n is less than (zero), or one if the net value of input n is (zero) or more in value.
The hard limit neuron unit input space has the weights value (Howard and M. Beale):

W1,1=-1,W1,2=1and a bias = 1.
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5. NETWORK VALIDATION AND ERROR ANALYSIS

The use of statistical measurement equations to estimate the level of the error in the outputs
makes use of neural network model is valid and acquires accepted scientific confidence. So, it
can be accomplished by the use of mean absolute error (MAE), root mean squared error
(RMSE), and mean squared error (MSE). Mean absolute percent error (MAPE) equations are
listed below.

MSE = Mear] 33, ~v,, F | )
t\ i=l j=1 J
noom \f— Y, ]
MAPE = Mean| 3 3 12201 4)
L=t Vi /
“n om ]
MAE = Mean =Yl (5)
\ i=l j=1 )
II nom vy \ (6)
RMSE = \‘ll Mean (" J
Ci=1 j=1

The validation and evaluation of neural networks model prediction can be achieved by using
error metrics like (MAE) or (RMSE) .The equations in the above definition of MAE and
RMSE (Andres and Kawashima, 2003 and Tsoukalas and Uhrig, 1997).

Where: n  No. of patterns in the validation set
m  No. of components in the output vector
0  The output of a single neuron j; and
y  The target output j

6. NETWORK DATA PREPARATION

Neural networks will be affected by the absolute magnitudes of the inputs and outputs
because of its high sensitivity, so it's better to minimize this effect to control numerical
overflow. Therefore all inputs data and outputs data to a NN were scaled; as shown in Table
4. Because of the sigmoidal function characteristic which is nearly to values (0 and 1), the
derivative equal or near to values (0 and 1) will get a zero value in magnitude, and this will
get to slow learning as a result of very small signal. Therefore, it's better to avoid the slow
rate of NN learning close to the end points (output range); it is submitted to give range of the
data between (0.1 and 0.9) as interval of scaled range (Teh, 1997). A submitted scaling
equation presented by Tsoukalas and Uhrig (1997) for a variable limited to minimum (xmin)
and maximum (xmax) values listed in Table 4 was used in this NN model and it's written as;

¥ = (0.8/A) X +0.9-0.8(Xn/A)] )
Where: A = (Xmax- Xmin )

e For circular columns, the ANN have six input nodes, one output nodes, and the hidden
layers have variable number of nodes selected by experimentation. The input variables
are: f'c, H, d, ps, f yh , s, and pcc .The choose of unconfined compressive strength of
concrete f'c, as the input variable instead of the CPCS, f'co, gets good indications for this
characteristic that can be determined distinctly by an experimental work. The one output
value corresponds to f ‘cc. In the error calculations of the (RMSE) and (MAE), the NN
output with range of values between (1 and 0), and the linear submitted equation gives
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(scaled) values of the desired output were adopted. It obtained the desired convergence
model in the training phase depending on the reduction of error of tolerance by (MSE)
error during the cycles of training phase and monitoring the performance of the NNs by
comparing the outputs. See Fig. 2-a.

For square columns as shown in Fig. 2-b, the ANN models have eleven input nodes, one
output nodes, and the hidden layer nodes will be varied in number and notified by
experimentation. Connection weights between (0 and 1) were selected randomly by
computer program in Mat lab software. Learning rate was 1. MAE, RMSE, MSE, and
MAPE were employed for the checking of computation assessments of different NNs
architecture. The trail code (9-1-2-1) architecture was chosen as the preferable ANNs
architecture. The Selection of ANN architecture has 9-7-7-2 configuration as shown in
Fig. 3.
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Table 4. Scaling down Data for NN, (Circular Concrete Columns)

Parameter Range of data
Minimum Maximum

f'c or f'co (MPa) 194 32.00
D (mm) 280 438.0
H (mm) 600 1500
fyn (MPa) 310 376.0
ps % 0.75 2.260
Smm 20.0 69.00
pee % 1.18 3.300
f'cc (MPa)-Experimental 24.0 52.00

Table 5. Scaling down Data for NN, (Square Concrete Columns)

Parameter Range of data

Minimum Maximum
Yongetal. !
f'c (MPa) 88.6 " 935
b, (mm) 134 152
H, (mm) 457 457
cc, (mm) 0 1.27
S (mm) 25.4 152
fyt, (MPa) 496 496
fyl, (MPa) 424 424
Dt,DI (mm) 3.2,10 3.2,10
Nc,Ns 4,0 4.4
f.ec (MPa) 83.1 101.6

(*) high strength concrete

89
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OUT PUT
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COMPRESSIVE STRESS (fcc)
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Columm cross section Concrete Propertics

Reinforcement Properties
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Fig. 2-a. Determined artificial neural network architecture for circular columns.
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Fig. 2-b. Determined artificial neural network architecture for square columns.

7. TRAINING AND TESTING OF ANN MODEL

e 14 data sets 4 confined materials of circular RC column data were chosen randomly for
testing. Remaining 10 data sets can be used for training data sets. Training phase of the
NN model showed Fig. 2-a was completed at the few seconds the epoch with 0.269 %
error.
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e 6 data sets 2 confined materials of square RC column data were chosen randomly for
testing. Remaining 4 data sets can be used as training data sets. Training phase of the NN
model showed Fig. 2-b was completed at the few seconds the epoch with 0.395 % error,
with a personal computer dell core 1-7 for this NN architecture. The error of output was
evaluated by use the mean squared error for each of the 5 seconds epochs during process
of the training phase, and the NN outputs error graphic shown in Fig. 4 was evaluated at
the end of training phase process. When the training phase processes were completed, the
artificial neural networks model was tested and evaluated, and learning will be achieved
with desired accuracy, see Table 3.
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Fig. 3. lllustration the errors of many trail architectures.
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Fig. 4. Error occurs at the end of training process after the training process for NN.
8. COMPARISON OF ANN MODEL WITH ANALYTICAL MODELS

8.1.  Square Concrete Columns:

Evaluation the values of confined concrete strength, fcc (model) by artificial neural networks
model was contrasted with analytical experimental models offered by Yong et al. 1988. The
comparison between the prediction and analytical results was achieved under the ratio of
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fcc(model) / fcc (by experiment) and the statistical characteristic values, which are defined
previously ( MAE, RMSE, MSE, MAPE, and R2). The ratio of fcc (model) /
fcc(experimental) for artificial neural networks model is shown in Fig. 5-a. As seen from this
figure, the prediction of output values obtained by artificial neural networks model is mostly
closer to the desired results (experimental). Computed for ANNSs predictions output are lowest
in the outcome than analytical models and the result can be corrected by improving the
performance of the artificial neural networks model.

100

ANN Results
=
[}

2':' I I I I I I I
20 30 40 50 60 7O 8O 90 100
Expenmental Results Peak Stresses MPa

Fig. 5-a. The relation between evaluated values by ANNs model and experimental results
(Square Columns).

Table 6. MAE, RMSE, MSE, MAPE, and R? Values for the NNs

Yong et al.
MAE MSE RMSE MAPE R°
0.000148 0.002582 0.050744 0.113334 0.940212

8.2.  Circular Concrete Columns:

Predicted confined concrete strength values for circular concrete columns by ANNs were
compared with analytical formulas given by Mander et al., 1988b; Sakai et al., 2000; and
Sakai, 2001).

801
70
60 R? =0,9601
50
40..
30
20
10

ANN Results

10 20 30 40 50 60 70 80
Expermmental Resulfs Peak Stresses MPa

Fig. 5-b. The relation between evaluated values by ANNs model and experimental results
(circular columns).
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Table 7. MAE, RMSE, MSE, MAPE, and R? Values for the NNs

Mander et al
MAE MSE RMSE MAPE R?
0.000107 0.001540 0.031152 0.132646 0.960155

e Contrasting of the Volumetric Reinforcement Ratio (ps ) and Fixed Tie Spacing

(s).

For a given transverse reinforcement (tie) spacing, s, the amount of reinforcement ratio, ps ,
corresponding to tie reinforcement bars in (1 to 3) layer may be selected. As a result, an
artificial neural model may be examined its demeanor due to changing of amount of
reinforcement ratio, for fixed tie spacing (s). Fig. 6 shows the curves of peak confined
concrete stresses for constant (tie) spacing, s, of the N 1-7-2 model for the circular columns. It
is noticed that the peak confined concrete stress raises as the amount of tie reinforcement bars
is increased for a fixed transvers reinforcement (tie) spacing, (for ps = 2.5) the increase in f'cc
=17.7 MPa, 87.2%).

40 Circular column NN'1-7-2 | /?3
35 32|
& 30
=
u25
et
%20
ge]
C
215
C
810
[eT]
£
B 5
ge)
L0
a
0 0.5 1 15 2 2.5 3
Lateral reinforcement ratio ps %
=—@— Lateral Reinforcement S=38 mm B Lateral Reinforcement S = 50 mm
== Lateral Reinforcement S =60 mm =@=_Lateral Reinforcement S =120mm

Fig. 6. The curves of confined stresses for fixed spacing for ties, S.

e Varying Main Bars Steel Ratio

The both of circular and square columns spaceman’s were examined for the NN 1-7-2 model
when the main steel bars ratio, pcc , is varied from 1.2% to 3%. All other needed input
parameters were identified. In Fig. 7, the percentage value of f'cc was increased from (28.3 to
35) MPa, 4.37 % for (C1-20 to C1-60) columns. The number of longitudinal bars has a minor
effect on confined stress. This fact was also noticed by Mander et al. (1988) in their works.
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Fig. 7. The effect of main reinforcement ratio on the f'cc.

9. CONCLUSION

An artificial neural networks application technology used in this research to predict the
confined concrete compressive strength of circular and square concrete column sections. The
best result was obtained for many trail and evaluation of these results. These results were
compared with both of the analytical and experimental works. The amendment artificial
neural model estimated closer outputs to the many experimental and analytical model results.
This conclusion comes to light the ability to use the developed NN model to estimate the
confined compressive strength of reinforced concrete columns for high strength (f'c = 88.6 —
93.5) MPa for square concrete columns and normal strength (f'c = 19.4 - 31 MPa) for circular
concrete columns. Many different types of confinement configurations were illustrated in this
research. The percentage of errors given by (MAPE) of testing output sets was obtained
0.113334 and 0.132646, respectively. The final errors were computed below 12 % for testing
sets.

Future study could develop a NN model to include other variables are set to study the effect of
these variables in clear and them, like hooks in tie angle , modulus of elasticity of materials.
Where it is not used in this research.
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