الخلاصة

تقدم هذه الدراسة بحثاً تجريبياً لدراسة سلوك الاعتاب الخرسانية نوع (تي) باستخدام أنواع مختلفة من الخرسانة في الشفة العليا و/أو النصل.

لقد تم تقوية الخرسانة في النصل بإضافة الياف الحديد وقوية الشفة العليا باستخدام الخرسانة عالية المقاومة. تم اجراء الاختبار على ستة نماذج لاعتاب ل مليونحم في الوسط. اثنان من هذه النماذج صنعت باماكلها من الخرسانة الاعتيادية بدون مضافات وثمانية نماذج مرجعية بينما تم تصنيع النماذج الأخرى بصورة جزئية أو كاملاً من الخرسانة المسلحة بالياف الحديد أو الخرسانة الاعتيادية عالية المقاومة في النصل و/أو الشفة.

لقد أظهرت النتائجالية للاختبار أن جميع النماذج سلكت سلوكاً مرناً إلى حد الحمل من 04 كيلونيوتن إلى 48 كيلونيوتن اعتماداً على نوع الخرسانة المستخدمة. لقد ازداد مقدار الانحراف الأقصى بنسبة (153%) للنموذج المصنع كلما من الخرسانة المصنعة باليافل الحديد وبنسبة (60.8%) للنموذج الذي حيوي على اليافل الحديد في النصل وخرجانة اعتيادية في الشفة العليا بينما انخفض الحيد الأقصى بنسبة (22%) في النموذج المصنع من خرسانة اعتيادية في النصل وخرسانة عالية المقاومة في الشفة العليا بمقارنة مع النماذج المرجعية.

لم يحصل تغير ملحوظ في قيمة الانحراف الأقصى بالنسبة للنموذج المصنع من الخرسانة المسلحة باليافل الحديد في النصل والخرسانة عالية المقاومة في الشفة العليا.

لقد أزدادت قيمة الحمل المقابل لأول تشقيق في الخرسانة في النموذج المصنع من الخرسانة المسلحة باليافل الحديد في النصل والخرسانة عالية المقاومة في الشفة العليا بينما لم تحصل تغيرات مهمة في النماذج الأخرى.

أن هذا النوع من التشقيق بين الانواع المختلفة من الخرسانة يمكن الاستفادة منه في المقاطع المستخدمة في الجسور أو تلك المستخدمة في تسقيف الفضاءات الواسعة كما أنه قد يكون مفيداً في التقليل من التشتيقات التي تظهر في هذه الجسور.

Notations

\(f'c \) : Cylinder compressive strength of concrete.
\(f_y \) : Yield strength of steel.
HSC: High strength concrete.
NSC: Normal strength concrete.
SFRC: Steel fiber reinforced concrete.

1-Introduction

T-beams have wide importance in bridges decks and an interest in floor or roof simply supported slabs on load bearing walls or girders. This technique of construction is widely used and suitable for residential, commercial, prefabrication and industrial buildings especially for large spans. The importance of using T-beam is that it gives a big compressive area and then increasing the provided reinforcement area which increase the capacity of section.

2- Experimental Study

2-1 Experimental Program
Tests were carried out on six beams, simply supported under a single point load at mid-span to investigate their behavior in bending(4). All beams were under reinforced to insure them to fail in flexure. Maximum shear reinforcement was provided.

The parameters were the concrete types of web and flange. The span, section and reinforcement were kept constant for all tested beams

2-2 Specimen Details

Figure(1) (a&b) presents the detailed testing program and nominal dimensions of the tested beams. The main reinforcement consisted of (6\(\phi \) 6mm) mild, hot-rolled, smooth steel bars employed as flexural reinforcement and (\(\phi \) 6mm @ 50mm) stirrups.

Longitudinal tension reinforcement was bent with (90\(^{\circ}\)) angle at the ends to prevent slip.

(a)

(b)

Fig.(1) Details of tested beams and testing program
Table(1) shows the designation of tested beams and the concrete types used in each beam.

<table>
<thead>
<tr>
<th>Beam Designation</th>
<th>Type of Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Web</td>
</tr>
<tr>
<td>B2&B6 *</td>
<td>NSC **</td>
</tr>
<tr>
<td>B1</td>
<td>SFRC***</td>
</tr>
<tr>
<td>B3</td>
<td>SFRC</td>
</tr>
<tr>
<td>B4</td>
<td>SFRC</td>
</tr>
<tr>
<td>B5</td>
<td>NSC</td>
</tr>
</tbody>
</table>

* Reference beams
** Normal strength concrete($f\text{c} =35\text{ MPa}$)
*** Steel fiber reinforced concrete
**** High strength concrete($f\text{c} = 50\text{ Mpa}$)

2-3 Materials

In the experimental program, (ϕ 6mm) smooth steel bars having (276 MPa) yield strength were used as flexural reinforcement.

In manufacturing the test specimens, the following materials were used: ordinary Portland cement (Type I); crushed gravel with maximum size of (10mm); natural sand from Al-Ukhaidir region with maximum size of (4.75mm); cramped mild carbon steel fibers with average length of (30mm), nominal cross section of (0.5mm*0.5mm), aspect ratio of (60) and yield strength of (1130MPa) (manufacturer).

The mixes proportions for the NSC, SFRC and HSC are reported and presented in Table (2).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NSC</th>
<th>SFRC</th>
<th>HSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water/cement ratio</td>
<td>0.4</td>
<td>0.4</td>
<td>0.30</td>
</tr>
<tr>
<td>Water (kg/m3)</td>
<td>155.2</td>
<td>155.2</td>
<td>116.4</td>
</tr>
<tr>
<td>Cement (kg/m3)</td>
<td>388</td>
<td>388</td>
<td>388</td>
</tr>
<tr>
<td>Fine Aggregate (kg/m3)</td>
<td>582</td>
<td>582</td>
<td>582</td>
</tr>
<tr>
<td>Coarse Aggregate (kg/m3)</td>
<td>1164</td>
<td>1164</td>
<td>1164</td>
</tr>
<tr>
<td>Steel Fiber volume (%)</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Superplastisizer (letter/ m3)</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>
2-4 Test Measurements and Instrumentation

Hydraulic universal testing machine (MFL system) was used to test the beam specimens. Mid-span deflection has been measured by means of (0.01mm) accuracy dial gauge (ELE type). The dial gauges were placed underneath the bottom face of each span at the middle (Fig.1).

2-5 Test Procedure

All beam specimens were tested using universal testing machine (MFL system) with monotonic loading to ultimate states. The tested beams were simply supported over an effective span of (900mm) and loaded with a single-point load at mid-span.

The beams have been tested at ages of (28) days and they were placed on the testing machine and adjusted so that the centerline, supports, point load and dial gauge were in their locations.

Loading was applied slowly in successive increments. At the end of each load increment, observations and measurements were recorded for the mid-span deflection and crack development and propagation on the beam surface.

When the beams reached advanced stage of loading, smaller increments were applied until failure, at which the load indicator stopped recording any more and the deflections increased very fast without any increase in applied load (2).

The development of cracks (crack pattern) was marked at each load increment. The compressive zone (flange) crashed in all beams at failure except for beam B5 in which the flange manufactured of HSC and the web of NSC. Figures (2 to 7) show the cracks pattern of each beam.

![Fig.2 Cracks pattern of beam B1](image1)

![Fig.3 Cracks pattern of beam B2](image2)
Fig. 4 Cracks pattern of beam B3
Fig. 5 Cracks pattern of beam B4

Fig. 6 Cracks pattern in beam B5
Fig. 7 Cracks pattern in beam B6

Fig. 8 Load Deflection Relationship For Beam B1
Fig. 9 Load Deflection Relationship For Beam B2
Figures (8 to 13) show the load deflection relationships for all specimens.

3- Test Results

All beam specimens behave elastically from zero loading up to loading of about 40-48 kN and then began to give large deflections for relatively small loads except for specimen beam B1 which gave a very small deflection up to a loading of (12 kN).

Fig. 8 shows the relationships between the applied load and deflection at mid-span for the six tested specimens. The reference specimen beams B2&B6 with NSC in both web and flange gave a maximum deflection of (14.15 mm) and (13.6 mm) and a first cracking of (10 kN) and (10.5 kN)
The failure loads were (63 kN) for B2 and (68 kN) for B6 and the failure modes were yielding of steel reinforcement first and then crashing of flange.

The specimen beam B1 with SFRC in web and HSC in flange gave (14 mm) maximum deflection. First cracking load was (32 kN) (increasing of 161% in comparison with reference beams) when the failure load was (58.5 kN). The specimen beam B3 with SFRC in both web and flange gave (35.8 mm) maximum deflection (increasing of 153%). The failure load was 68.5 kN. For the specimen beam B4 with SFRC in web and NSC in flange the maximum deflection was (22.32 mm) (increasing of 60.8) and the failure load was (65 kN). The specimen beam B5 with NSC in web and HSC in flange gave a maximum deflection of (6.77 mm) (decreasing of 50.22%). The first cracking load was (11 kN) and the failure load was 65 kN.

![Load Deflection Relationship](image)

Fig. 14 Comparison of Load Deflection Relationships for All Specimens
4-Conclusions

1- The use of HSC with SFRC in beam B1 gave a very stiff section up to a loading of (18 kN) but approximately with the same ductility for the reference beams.

2- The specimen beam B3 introduce a more ductile behavior and increasing in the maximum deflection of (153 %) because of using SFRC in both web and flange in addition it behave elastically in the beginning and then started yielding at a relatively high load.

3- The use of SFRC with NSC in beam B4 gave a more ductile section with increasing in the maximum deflection of (60.8 %) but less ductility in comparison with B3.

4- A combination of HSC and NSC in beam B5 gave less ductile section for approximately the same section capacity of reference beams but with decreasing in maximum deflection about (46.1 %).

5-References

[5] ACI Committee 318 "Building Code Requirements for Structural Concrete (ACI 318- M 95)", American Concrete Institute, Detroit, USA.