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ABSTRACT 

The currently available approaches on the effects of the exposed reinforcement on the  flexural 

strength capacity of beams by other researchers are critically reviewed. These methods for 

estimating the flexural- compression strengths of beams with main steel exposed along all or 

part of the span do not give good predictions for the ordinary reinforced member. In this paper, 

the simple shear-compression theory introduced in earlier study is modified to the treatment of 

unbonded beams and a very simplistic empirical equation is proposed. The accuracy of the 

proposed equation is examined by comparing with results of 44 beams from literature. The 

comparison showed that the predictions by the proposed equation are between 0.85-1.25 to 

those of test results. The ratio of the experimental ultimate moments to the calculated ultimate 

moments by the proposed equation gives an average of 1.06 and C.O.V=0.21. The method of 

calculation proposed here is relatively successful in predicting the ultimate moment resistances 

but not in predictions of the physical behavior of the beams with exposed reinforcements. 

KEYWORDS: Flexural capacity, Neutral axis depth, Exposed reinforcement, Exposed length, 

Load pattern and Reinforcement ratio. 
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1. INTRODUCTION  

There are many research works were carried out to study the flexural failure due to debonding 

between the steel reinforcement and the surrounding concrete. However, the majority of these 

works intended to evaluate the residual flexural resistance of the elements with corroded steel 

reinforcement and their physical behaviour but they did not propose any method of analysis 

(Al-Sulaimani et al. (1990), Almusallam et al. 1996, Rodriguez 1997, Raoof and Lin 1997, 

Mangat and Elgarf 1999, El Maaddawy et al 2005, Du et al 2007, Azad et al. 2010). 

The first theoretical approach is a work on unbonded post-tensioned concrete, where the subject 

is normally expressed in terms of stress increment of the unbonded tendons due to the external 

loading. If the initial prestress is zero, the member becomes an unbonded. Researches on 

unbonded tendons have been divided into two schools of thoughts based on deformation were 

used to analyze the tendon stress at flexural failure (Au and Du 2004). The first school is based 

on the type of loads, load arrangement and span depth ratio and the other thought based on the 

neutral axis depth of a section at the ultimate moment (Lorentsen 1958 and Lorentsen 1964, 

Pannell 1969, Mattock et al. 1971 and Tam and Pannell 1976). 

It is well known; in a reinforced concrete member rotational equilibrium requires that 

MNz =           1 

where N  =longitudinal force (tension in main steel=compression in concrete) 

z = internal lever arm 

M  = External bending moment 

Differentiation of the equation gives 
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where x = length measured along the beam 

V = shear force 

In Normal beam action z is approximately constant and 
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However, if the bond forces required for this magnitude of dxdN /  are not realizable, due for 

example to the weakening of bond by spalling of concrete as a result of corrosion of main bars 

or cutting a part of the concrete cover for repairment purpose, the equation (2) requires a 

variation of z . In more directly physical terms, a part of the load is resisted by an arching 

action. In the extreme condition, if 0/ =dxdN , the beam behaves entirely as an arch, with the 

main steel functioning as a tie, anchored at the ends if the beam is simply supported. The strain 

of the steel at any section of the beam is no longer equal to that of the surrounding concrete. In 

terms of overall deformations, the elongation of the main steel is greater than that in beam 

action while the shortening of the extreme fibre of the concrete is less. The elastic neutral axis 

depth is reduced and crushing of the concrete prior to yielding of the steel may reduce the 

member’s flexural capacity. This is the case if the depth of the compression zone in the arching 

action is less than that required for the yield of the reinforcement and cause flexural failure of 

the member. 

The analysis for RC beams with exposed steel bars had been commenced by researchers when 

they observed that there are similarities between prestressed concrete with unbonded tendons 

and steel reinforced concrete beams with exposed (unbonded) bars (Cairns 1993). This thought 

led to adopt Pannell’s model as the basis of BS8110 and the Canadian Code A23.3-94. Very 

limited researches have been focused on the behavior and the evaluation of the flexural capacity 

of RC beams with an exposed length of steel bars and various methods of analysis by means of 

experimental works and analytical models have been developed. (Cairns and Zhao 1993, Zhang 

and Raoof 1995, Wang and Liu 2009, Jnaid and Aboutaha 2014). 

Cairns (1993) believed that the adoption of Pannell’s approach for RC beam analysis is 

imprudent by extrapolating results from prestressed concrete to reinforced concrete when 

prestress is zero in reinforcement. He gave some restriction evidences for prestressed beams 

with tendons in the middle of the surrounding concrete and anchored externally while the 

unbonded steel bars lies outside the concrete. Also, the tendons’ yielding is limited up to 70% 

of their characteristic strength which is sensible high strength tendons. Therefore he first 

merited to conduct further investigations in this area. 

It is worth to appraise the thought by Pannell (1969) and Tim and Pannell (1976), which was 

based on the neutral axis depth of a section at the ultimate moment. They suggested that the 

ratio ( ) of equivalent length of plastic zone to depth of the neutral axis at ultimate moment 

(c) is constant and equal to 10 for design purpose, this means the deformation of the concrete 

to be concentrated within a plastic zone of length c10 , or more accurately the depth of the centre 
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of rotation due to loading. The value of   had been further studied by assessment of 

experimental results of 148 simply supported beams from literature and the mean values of the 

  showed there is obvious variation from the value of 10 by Pannell to other values by others 

(Au and Du 2004). Therefore, Au and du (2004) examined different values of   equal to 9.3,10 

and 16.1 using Pannell’s equation (eq.1) and they found  =9.3 is on the safe side for practical 

purpose. However, in the analysis of RC beams, Wang and Liu (2009) used the constant values 

of by Pannell or Au and Du. Recently, Jnaid and Aboutaha (2014) have replaced with a 

symbol of , using its values between 3-13 in their FEA analysis to give a good account for 

other parameters like steel reinforcement ratio, the span-depth ratio, concrete compression ratio 

and loading type have. This raises a question of whether the other values have better predictions 

for  the flexural capacity of RC beams. This uncertainty has been taken as one of turning points 

in adopting the Pannell’s method along with other shortcomings as explained in the following 

part of this section.  

2. REIVEW OF PREVIOUS STUDIES 

Pannell (1969) considered the deformation of the concrete to be concentrated within a plastic 

zone of length 10c, where c is the depth of the neutral axis at ultimate moment, or more 

accurately the depth of the centre of rotation due to loading. Within this length the main strain 

of the extreme fibre in compression is εcu, and the strain at the level of the prestressed 

reinforcement is:  

c

cd p

cucp

−
=            4 

where  dp = the effective depth of the prestressed reinforcement 

Pannell proposed an equation for prestressed concrete and if it is applied to unbonded reinforced 

concrete, It gives 
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where dbAs /= ,  =  the ratio of the average compression stress of concrete to the 

compression strength of concrete, cf =cylinder strength of concrete and  tl  =the  length between 

anchorages. 
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This approach predicts dc /  and thence 2/ bdfM c
  to be highly dependent on dlt /  and 

independent of the pattern of loading. 

Method by Lorentsen (1963) also primarily concerned with prestressed concrete seem to have 

a stronger physical basis and did specifically consider unbonded reinforced concrete as a 

limiting case. He did not treat the deformation of the concrete in the same way as Pannell. 

Instead of considering it to be concentrated to a limited plastic length, he integrated strains 

along the span in order to define a “bond factor” F. The F is defined as the ratio of the steel 

strain, which is constant along the span, to the strain of the concrete at the level of the steel at 

midspan, see Fig. 1. 
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Where, as shown in Fig. 1, εs  = the steel strain, εcsm = the strain of the concrete at the level of 

the steel at mid span, εcm =the extreme fibre compressive strain of the concrete at midspan, xm= 

the neutral axis depth at midspan and d is the effective depth of the section. 

The midspan moment is given by: 
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where s
 = the stress of the reinforcement 
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Fig. 1. Basic parameters of Lorentsen’s theory. 
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Lorentsen carried out a programme of tests which was largely concerned with prestressed 

concrete but included five tests of ordinary reinforced concrete beams. Details and test results 

are given in Table 1. 

Cairn and Zhao (1993) followed an approach similar to Lorentsen’s, with a realistic stress-strain 

relationship for concrete, and with the addition of consideration of bond slip between the steel 

and concrete. The numerical model was implemented in a program and the predictions are 

compared with the results of 17 tests of rectangular and nearly rectangular beams in which the 

main steel was exposed over varying lengths symmetrical about midspan. The beams were 

simply supported and loaded by pairs of concentrated loads situated symmetrically with respect 

to the midspan. In the majority of case, the exposed lengths were about 90% of the span. 

The predictions from the computer modeling agree very well with the experimental ultimate 

loads-mean Mcalc/Mtest=1.01, standard deviation=0.06 for 14 beams with exposed steel. The 

other three beams were the control specimens with fully bonded reinforcement. The failures 

were predominantly flexural. Details and test results are given in Table 1. 

Raoof and Lin (1997) reports fully 88 tests of beams with a cross-section 150x300mm and very 

summarily on some tests of smaller specimens. In the main tests, the tension reinforcement was 

exposed over various lengths in 3.0 m simply supported spans subjected to a variety of loading 

patterns. The main interest in the work appears to have been in shear resistance but some beams 

failed in flexure and could be due to the use of main reinforcement with a yield stress of only 

363 N/mm2 (presumably plain round bars). This low steel strength makes theoretical flexural 

resistance low, even if the main bars are not exposed. In a number of cases, the experimental 

ultimate moments were well above the theoretical flexural resistance, presumably showing that 

the reinforcement strain hardened significantly, and this makes the analysis of the results 

difficult. Some of the beams contained shear reinforcement, but its spacing was equal to 1.8d, 

which makes it efficiency rather dubious, especially because the positions of links relative to 

those of bar exposure are unknown. The paper does not propose any method of analysis. 

  



186                 Rizgar S. Amin 

Table 1. Summary of Test Data and Results. 

Author 
Beam 

No. 

cuf , 

N/mm2  
 , % d , mm 

d

l
 

l

le  












2bdf

M

cu

u  

Lorentsen 

3 49.5 0.52 260 15.38 1.000 0.069 

15 39.5 2.16 180 22.22 1.000 0.164 

18 42.8 2.18 180 22.22 1.000 0.156 

21 53.3 0.54 260 15.38 1.000 0.069 

22 52.0 2.06 180 22.22 1.000 0.154 

Regan 

2 49.0 24.0 300 8.53 0.890 0.187 

3 52.3 2.18 300 8.53 0.890 0.136 

4 59.2 2.18 300 8.53 0.890 0.124 

6 33.1 1.99 210 12.19 0.890 0.201 

7 49.6 1.99 210 12.19 0.890 0.152 

8 51.3 1.99 210 12.19 0.890 0.112 

Cairns 

S2 25.0 0.75 372 7.26 0.925 0.124 

S3 31.2 0.73 380 7.11 0.630 0.111 

S4 38.2 1.08 253 10.67 0.933 0.109 

S4B 24.9 1.27 225 12.00 0.933 0.165 

S5 35.4 1.40 195 13.85 0.941 0.093 

S7 30.3 0.77 358 7.54 0.859 0.153 

S8 29.6 1.93 340 7.94 0.859 0.179 

S9 32.4 0.50 350 7.71 0.948 0.076 

S10 29.9 0.74 200 13.50 0.948 0.100 

S11 34.9 0.74 200 13.50 0.600 0.093 

W1 25.5 1.94 245 11.02 0.911 0.181 

W2 25.4 1.94 250 10.80 0.696 0.202 

 

Wang and Liu (2009) studied tests results of RC beams with a partially unbonded length of 

steel in tension zone. They proposed a model representing a combination of compatibility 

condition of deformation with equilibrium condition of forces. The calculation of shortening of 

the concrete as 9.3xEc with no influence from the inclination of the trust line is rather unrealistic, 
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but any method simple enough to be usable is going to involve some off assumptions. The other 

point about this paper is its many references of corrosion. The real beams other than lintels 

contain stirrups and, so long as some of them survive, the bars are held in contact with the 

concrete core. In this situation, the ribs of the bars should ensure a significant bond resistance 

is restrained. This increases the flexural compression capacity but increases the risks of shear 

and anchorage failures. However, they refer to further research which will aim to address this.  

Jnaid and Aboutaha (2014) conducted an FEA model to predict the residual flexural capacity 

of reinforced concrete beams with unbonded reinforcement. They found that the reinforcement 

ratio and span-to-depth ratio and the debonding length over the span have large effects and the 

load patterns have less effect on the ultimate flexural capacity. They only considered the case 

loss of bonding between the reinforcement and the surrounding of concrete and neglect the 

other concern of losing of bar cross section due to corrosion as considered by Wang and Chen 

(2011) in FEA programme. Their equation to calculate the ultimate strength of unbonded 

concrete beams including a factor of (ψ) is rather too long and it would be very difficult for 

practical use. 

3. DISSCUSSION AND ANALYSIS   

Pannell’All of the analytical methods explained in the previous section have some basic 

consequences in terms of predictions and were theoretically formulated in different equations. 

The equations were initially based on the strain and stress compatibility between the 

reinforcement and concrete in a cracked section.  

Pannell used the ratio of (le/d) as a major factor and he found the calculated ultimate moment 

decreases as the ratio increases. Test results in Table 1 were used to shows Mexp/Mcalc plotted 

against le/d, with Mcalc determined via Pannell’s equation (5) as shown in Fig. 2. There is a clear 

tendency for ultimate moments to be overestimated when le/d is small and underestimated when 

the ratio is large. Thus the influence predicted for le/d is incorrect and would seem that as a first 

approximation the ratio is not an influencing parameter.  

Except the Pannell’s approach, the methods of Lorentsen and all the others reviewed, predict 

that the pattern of loading had a major effect on the ultimate moment, with the moment being 

very considerably increased if there is a constant moment region rather than a peak moment at 

a single concentrated load. Tests by Regan show that this is not the case and indeed that the 

reverse is true. The reason is that in the case of a concentrated load, applied from above, the 

concrete compression zone at the section of maximum moment is restrained by the load with 
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the result that failure either occurs to the side of the load where the depth of the compressive 

zone is not a minimum or at the loaded section but higher concrete stresses sustained. 

 

Fig. 2. Comparison of experimental ultimate moments with prediction by Pannell’s method.  

The calculation of shortening of the concrete as 9.3xEc by Wang and Liu do not account for the 

influence of some parameters (Jnaid and Aboutaha 2014). Also, the assumption of a linear 

relationship between the strain in the bar and the length of the exposed zone conflicts with the 

non-liner relationship according to Jnaid and Aboultaha FEA outcomes. 

In view of the shortcomings of the approaches by Pannell, Lorentsen, Wang and Jnaid and of 

the difficulty and complexity of deriving a truly rational theory, it is sensible to seek a rather 

simplistic theory. The simple shear-compression theory by Regan (1967) gives a rather 

simplistic solution.  

4. TRANSFER OF THE SHEAR-COMPRESSION MODEL TO THE 

TREATMENT OF UNBONDED BEAMS 

In shear-compression failure where the debonding occurs not by design but is caused by shear 

cracks. Regan (1967) analyses the behaviour of a region in which the compression zone and the 

tensile reinforcement are separated by shear crack. He considered three situations in regard to 

the relationship between the thrust line and the shear crack and three possibilities are considered 

in terms of the concrete’s stress-strain relationship as shown in Fig. 3. 

Part (a) shows a shear span in a beam without shear reinforcement with an inclined crack at its 

right-hand end. Because of the lack of stirrups, the triangle of concrete below the inclined crack 

is isolated from the rest of the beam by the inclined crack and a vertical crack at the section of 

maximum moment leaving just a point of contact at the top of the inclined crack. 
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(c) Derivation of the reference neutral axis depth Co 

Fig. 3. Regan’s Shear-Compression Theory. 

The force in the flexural reinforcement is therefore constant along the length from the right – 

hand end to the section where the inclined crack intersects the reinforcement. The same is true 

for the compression force in the concrete, which has a horizontal component equal to the force 

in the reinforcement. Equilibrium with the applied moments requires that the lever arm should 

reduce shown from z to Rz in the length between the sections at the two ends of the crack. The 

part of the broken line above the inclined crack represents the thrust line in the concrete. The 

extension to the support is drawn so as to define the ratio R, but what actually happens in the 

region depends on the bond of the reinforcement but is not of much relevance so long as there 

is no bond/anchorage failure. 

Part (b) of the figure shows possible distributions of the compression stresses in the concrete 

above the inclined crack drawn on the assumptions that tension in the concrete is negligible. 

The distribution of the top fibre strain of the concrete can be calculated for any of the situations 

shown in part (b), and for any stress-strain relationship for concrete as a function of the 

horizontal component of the force in the concrete, the neutral axis depth “c” at the right-hand 

end and the ratio R between the lever arms at the end sections of the length considered (note: 
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the calculation and its results depend on R but are independent of the length between the lever 

arms at the end section) 

The actual depth of the neutral axis at the right-hand end can be found using a compatibility 

condition in terms of the shortening Δc of the top surface and the lengthening of the 

reinforcement Δs between the two end sections 

( ) ( ) scdcdc =− //1//          9 

Δc is calculated by integration of the top fibre strains and Δs is equal to the constant steel strain 

times the length. 

 For practical purposes simplification is necessary and one need only consider conditions when 

the compression zone above the top of the crack reaches its failure state. 

Part(c) shows the conditions at failure in a normal beam failing in flexural compression where 

the compatibility condition is εcu/εs=c/(d-c)  

From the first equation in part (c) substitution of K=ρEsεcu/αf’c leads to (cₒ/d)=K[(d/cₒ)-1] from 

which 
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With a horizontal thrust line (R=1) in Fig. 3(b), the situation in respect to the neutral 

axis depth at compression failure is the same as that leading to the last equation above. Given 

this and the fact that the distribution of strain along the top is a function of R suggests the 

possibility of a simplification making (c/d) a function of (cₒ/d) and R. 

Then it could be assumed 
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Which makes ( )occ / =1 when R =1 and makes it reduce as R  decreases, to reach a minimum 

of ( ) ( ) dcdc oo /1// +  for R =0 

However, there are some initial assumptions should be taken into account in the derivation of 

a possible expression to determine the neutral axis depth at the section of maximum moment. 

1. The thrust lines in the concrete are straight between the centers of compression at the section 

of maximum moment and those at the supports or the ends of the unbonded lengths.  

10 
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2. There is a relationship between the neutral axis at the section of maximum moment and 

what would be the neutral axis depth in a normal beam failing by flexural compression. and 

3. The cases to be considered exclude beams failing by yielding of the flexural reinforcement, 

and shear or anchorage failure. 

In order to explore the empirical value of R in equation (11), data in Table 1 are used along 

with other tests by Regan (1989), Rodriguez (1997), Wang (2001) and Li et al. as shown in 

Table 3. 

All tests were conducted on simply supported reinforced concrete beams with rectangular 

sections except beams 3 and 21 by Lorentsen were T-sections. Tests by Cairns and Zhao, 

Rodriguez, Li, Wang et al. and beams 2, 6 and 7 by Regan were conducted with two-point 

loading. The rest of the tests of which by Lorentsen and beams 3, 4 and 8 by Regan were with    

a single load.   

To obtain the theoretical neutral axis depth according to ACI, the value of K in equation (11) is 

calculated as 𝐾 = 𝜌𝐸𝑠𝜀𝑐𝑢/0.85𝛽1𝑓′𝑐        

Considering values for εcu=0.003 and Es=200x103 N/mm2 for different strength of concrete as 

given in Table 2 below. 

Table 2. Value of K.  

 
)(MPaf c

 

28 35 42 49 56 

1 0.85 0.80 0.75 0.70 0.65 

( )'/ CfK ( )MPa   830 882 941 1008 1085 

 

For Li tests, the following K  is used due to the appointed sE  by the authors. 

Table 3. Value of K  for Li. et al. tests. 

510xEs ( )MPa  
1.75 1.85 1.88 2.00 2.01 2.06 2.10 2.18 2.27 

( )'/ CfK 
 ( )MPa  726 768 780 830 872 855 871 905 942 

Then the experimental value of the neutral axis depth at failure could be inferred from the 

ultimate moment: 
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For sake of simplication, the value of 1 is taken as an  average of 0.80. 

Where 𝑚 = 𝑀𝑢/𝑓′𝑐𝑏𝑑
2    and 𝑀𝑢 is the ultimate moment 

Fig. 4 shows the relationship between the (cₒ/d) and (c/d) to obtain the empirical prediction of 

the neutral axis depth of unbonded beam at a section of maximum moment. 

 

Fig. 4. Relationships between the ( )dc /  and ( )dco / . 

There is inevitably a scatter relationship in Fig.4; due partly to particular features of various 

tests, but there does appear to be a general relationship between the two neutral axis depths, 

which may be approximated by 

( )
( )dc

dc

d

c

d

c oo

/45.0

/

0+








=








         13 

i.e. in effect equation (8) with R =0.55. 

For the case of unbonded reinforcement, the calculated (c/d) from equation (10) is replaced in 

the ACI-318 expression for moment capacity as shown in equation (11) 
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In most of the tests in Table 4, the main reinforcement was exposed for almost the full span but 

there are a few instances where this was not the case and such instances can certainly arise in 

practice if debonding occurs as the result of corrosion of the main bars. If the steel is bonded in 

significant parts of the span toward the supports, the elongation of the steel must be reduced 

and this can be allowed for by the modifying equation (14) to 
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The modification assumes not merely that there is some bond but also that it doesn’t 

fail. This is unlikely to be the case in the absence of stirrups and le should be taken as 

equal to l for the plain-webbed members. Where stirrups are present, the effectiveness of the 

bond will depend on the numbers of stirrups and on the positions of the main bars relative to 

the stirrup corners. For the present analysis, it has been assumed that bond was effectively 

effective in the tests by Cairns and Zhao (1993). 

5. RESULTS FOR THE PROPOSED EQUATION 

Table 4 summarizes the results of calculations using equations 10, 13 and 14 and compares 

them with the tests results. The ultimate flexural capacity of beams is given in terms of the case 

for the bonded beam Mb (the superscript “b” denotes the perfect bonded steel), Mexp for 

experimental results and Mub, calc the calculated moment according to the proposed equation 

(14). The comparison is shown graphically in Fig. 5 between the Mexp and Mub, calc for four 

parameters of f’c, l/d, le/l and load patterns. Each part of which contains the same points, but 

with different symbols used to distinguish between different groups of tests. 

The overall agreement between calculated and experimental ultimate moments is fairly good 

and none of the factors considered in Fig. 5 (a-d) seems to lead to any very systematic trend to 

errors. Fig. 5 (a-d) shows prediction of ultimate Mub,calc by the proposed equation were between 

0.80 Mexp (or Mexp=1.25 Mub,calc) and 1.20 Mexp (or Mexp=0.85 Mub,calc). The comparison is 

noticeably better than that for Pannell’s method as shown in Fig. 2. The results of this analysis 

show the mean value of Mexp/Mub,calc equals to 1.06, STDV=0.22 and C.O.V. =0.21. The value 

of C.O.V may indicate to some results on the unsafe or conservative side. One of the reasons 

may be due to the lower reinforcement ratio as the steel yield completely before any crush in 

concrete at compression fibre. 

The method of calculation by the proposed equation is relatively successful in predicting 

ultimate moment resistance but neither Table 2 and Fig. 5 shows whether or not it predicts 

15 
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actual behavior. Two comparisons were demonstrated in Fig. 6 and Fig. 7 to give the behavior 

of the proposed equation with the tests results. 

Table 4. Comparison between calculated and experimental results. 

Beam 

Name 

'

cf
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
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exp
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









2'

,

bdf

M
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calcub 

bM

M exp
 

calcubM

M

,

exp
 

Cairns and Zhao 

S2 20.0 0.75 372.0 7.26 0.93 0.424 0.214 0.175 0.155 0.140 0.88 1.10 

S3 25.0 0.73 380.0 7.11 0.63 0.386 0.223 0.141 0.139 0.146 0.99 0.95 

S4 30.6 1.08 253.0 10.67 0.93 0.424 0.213 0.165 0.136 0.132 0.83 1.03 

S4B 19.9 1.27 225.0 12.00 0.93 0.509 0.279 0.269 0.206 0.178 0.77 1.16 

S5 28.3 1.40 195.0 13.85 0.94 0.477 0.253 0.219 0.116 0.163 0.53 0.71 

S7 24.2 0.77 358.0 7.54 0.86 0.398 0.202 0.150 0.191 0.133 1.27 1.43 

S8 23.7 1.93 340.0 7.94 0.86 0.551 0.324 0.304 0.224 0.202 0.74 1.11 

S9 25.9 0.5 350.0 7.71 0.95 0.328 0.143 0.096 0.095 0.097 0.99 0.98 

S10 23.9 0.74 200.0 13.50 0.95 0.394 0.189 0.145 0.125 0.126 0.86 0.99 

S11 27.9 0.74 200.0 13.50 0.60 0.381 0.223 0.126 0.116 0.146 0.92 0.80 

W1 20.4 1.94 245.0 11.02 0.91 0.577 0.338 0.337 0.226 0.209 0.67 1.08 

W2 20.3 1.94 250.0 10.80 0.70 0.578 0.375 0.337 0.253 0.228 0.75 1.11 

Lorentsen 

3 39.6 0.52 260.0 15.38 1.00 0.304 0.122 0.110 0.086 0.074 0.79 1.16 

15 31.6 2.16 180.0 22.22 1.00 0.531 0.288 0.229 0.205 0.173 0.89 1.18 

18 34.2 2.18 180.0 22.22 1.00 0.530 0.287 0.216 0.195 0.173 0.90 1.13 

21 42.6 0.54 260.0 15.38 1.00 0.299 0.119 0.108 0.086 0.073 0.80 1.19 

22 41.6 2.06 180.0 22.22 1.00 0.500 0.263 0.175 0.193 0.151 1.10 1.27 

Regan 

2 39.2 2.4 300.0 8.53 0.89 0.524 0.297 0.251 0.234 0.168 0.93 1.39 

3 41.8 2.18 300.0 8.53 0.89 0.508 0.284 0.220 0.170 0.162 0.77 1.05 

4 47.4 2.18 300.0 8.53 0.89 0.500 0.277 0.199 0.155 0.149 0.78 1.04 

6 26.5 1.99 210.0 12.19 0.89 0.537 0.308 0.292 0.251 0.193 0.86 1.30 
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7 39.7 1.99 210.0 12.19 0.89 0.502 0.279 0.214 0.190 0.159 0.89 1.19 

8 41.0 1.99 210.0 12.19 0.89 0.496 0.275 0.208 0.140 0.157 0.67 0.89 

Rodriguez 

126 28.0 1.51 171.0 11.99 1.00 0.492 0.257 0.227 0.236 0.165 1.04 1.43 

313 29.6 1.51 171.0 13.45 1.00 0.483 0.250 0.217 0.217 0.153 1.00 1.42 

314 29.6 1.51 171.0 13.45 1.00 0.483 0.250 0.217 0.220 0.153 1.01 1.44 

316 29.6 1.51 171.0 13.45 1.00 0.483 0.250 0.217 0.212 0.153 0.98 1.39 

Wang et al. 

L-1 18.2 0.67 160.0 13.13 1.00 0.421 0.203 0.110 0.112 0.134 1.02 0.84 

L-2 18.2 0.66 167.0 12.57 0.67 0.419 0.244 0.102 0.111 0.158 1.09 0.70 

L-3 18.2 0.66 165.0 12.73 0.33 0.419 0.309 0.102 0.120 0.194 1.18 0.62 

L-8 18.2 1.39 161.0 13.04 1.00 0.426 0.207 0.209 0.184 0.137 0.88 1.35 

Li 

L-1a 27.1 0.51 164.6 12.75 0.90 0.343 0.157 0.078 0.082 0.106 1.04 0.77 

L-1b 27.1 0.51 163.0 12.88 0.90 0.342 0.156 0.078 0.076 0.105 0.97 0.72 

L-2a 27.1 1.14 167.3 12.55 0.90 0.442 0.230 0.127 0.137 0.150 1.04 0.88 

L-2b 27.1 1.12 166.3 12.63 0.90 0.444 0.231 0.122 0.119 0.151 0.98 0.79 

L-3a 27.1 2.01 167.0 12.57 0.90 0.522 0.293 0.201 0.205 0.185 1.02 1.11 

L-3b 27.1 2.01 165.0 12.73 0.90 0.550 0.316 0.217 0.192 0.198 0.88 0.97 

L-4a 27.1 2.46 172.7 12.16 0.90 0.578 0.339 0.215 0.201 0.210 0.93 0.96 

L-4b 27.1 2.46 172.3 12.19 0.90 0.575 0.336 0.195 0.203 0.208 1.04 0.97 

L-5a 27.1 2.95 177.7 11.82 0.90 0.606 0.362 0.222 0.195 0.222 0.88 0.88 

L-6a 27.1 3.64 173.7 12.09 0.90 0.614 0.369 0.299 0.264 0.225 0.88 1.18 

L-6b 27.1 3.64 173.3 12.12 0.90 0.626 0.379 0.315 0.247 0.230 0.79 1.07 

L-7 27.1 1.46 222.7 9.43 0.90 0.482 0.261 0.146 0.153 0.168 1.05 0.91 

L-8 27.1 3.20 106.3 19.75 0.90 0.623 0.377 0.300 0.213 0.229 0.71 0.93 
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(a) 

 
(b) 

 
(c) 

 
(d) 

calcubMM ,exp 25.1=  calcubMM ,exp 85.0=  

Fig. 5. Comparison of experimental and calculated ultimate moments. 

The tests by Cairns and Zhao included one test (T1) in which the depth of main steel exposed 

was increased in stages by breaking out successively more concrete. In each condition, the 

loading applied was such as to produce the same maximum moment. The recorded neutral axis 

depths are plotted against (le/l) in Fig.6, where they are compared with values calculated by 
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equation (13) and Pannell’s predictions. The experimental and calculated values are slightly 

higher, which is reasonable since the experimental ones do not correspond to the ultimate limit 

state and the neutral depth to increase near failure.  

In overall terms, the rather limited data on neutral axis depth shows that the values calculated 

from equation (13) are in good agreement but not by Pannell’s equation. 

 

Fig. 6. Variation of neutral axis depth with exposed length Beam T1 by Cairns and Zhao. 

Pannell, Wang and Jnaid confirmed the importance of the ratio of exposed length to depth of 

the section. In Fig. 7, the data from Table 4 were classified to four ranges of (le/d) and showed 

against the Mexp/Mub,calc. The figure shows a greater reduction in more highly reinforcement 

ratio and where there is larger exposed reinforcement. 

 

Fig. 7. Reduction of flexural strength in beams with exposed reinforcement. 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8

d

c

l

le

Pannel’s Equ.

Proposed Equ.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 1.00 2.00 3.00 4.00

4.24-7.59

8.10-10.85

10.94-15.38

17.87-22.22

%

( )dle /

calcbuM

M

,

exp



198                 Rizgar S. Amin 

6. CONCLUSIONS 

1. Pannell’s methods in which the deformation of the concrete is taken to depend only on its 

ultimate strain, the depth of the neutral axis predicts a strong inverse relationship between 

the ultimate moment and the span/depth ratio. No such relationship is evident in the test 

results. Other methods, such as Lorentsen’s, which determine concrete deformation by 

integration along the span, predict that the ultimate should increase with an increase in the 

length of the constant moment region. The tests do not show this. 

2. The other works on the effects of debonding due to the effects of corrosion and/or the cutting 

away of concrete in preparation for repair work by Cairns and Zhao, Zhang and Raoof. 

These analytical approaches appear to be successful but the papers do not provide a 

practicable method of calculation.  

3. There are FEA and proposed models for estimating the residual strength by Wang and Liu 

and Jnaid and Aboutaha. Their models are based on simple assumptions and they 

concentrated on the physical behavior of the unbonded steel through the influenced 

parameters. 

4. A very simplistic empirical equation is proposed to predict the flexural capacity of 

unbonded RC beam. The efficiency of the proposed equation is examined by comparing its 

predictions with the results of 44 tests from literature. The comparisons showed that the 

predictions by the proposed equation are in good agreements with test results. The method 

of calculation proposed here is relatively successful in predicting ultimate moment 

resistances but not in predictions of their physical behavior. The ratio of the experimental 

ultimate moments to the calculated ultimate moments gives an average of 1.06, STDV=0.22 

and C.O.V=0.21. 

5. It is worth to add some of a very relative issue for further considerations in future: 

(i) Corrosion can affect both stirrups, which are particularly vulnerable due to their small 

cover, where they are outside the main bars and worst of all at their at the corners of 

beams. Corrosion of main bars is unlikely to completely remove their bond so long as 

some stirrups remain intact and can hold the bars in contact with the concrete core of the 

beam. The major types of failure are shear and loss of anchorages. 

(ii) In its present form, the proposed equation does not treat continuous beams. 

(iii) It does not treat other possible modes of failure such as loss of end anchorage. 
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