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ABSTRACT  

In this paper, two finite element models were performed. The fiber and matrix represented as 

two different materials in the first plate, while the second showed as a composite plate. The 

boundary conditions included clamped the plates on four ends and the dimensions of the 

composite plates were changed in this study. The finite element was performed and ANSYS 

16.1 was employed in modeling. By comparing the results between the frequency ratio and 

mode numbers for different plate thickness, the results showed that natural frequencies 

calculated by these two model thickness of the (length/width) ratio will be more uniform and 

the error will be small. The numerical equations that performed from this study used to 

investigate the natural frequencies for longitudinal clamped composite plate. 
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1. INTRODUCTION 

Laminated composite plates are used as a main component in primary aerospace and aircraft 

structures and marine structures because of their properties. Properties such as high specific 

strength and stiffness, high fatigue and corrosion resistance have attracted researchers and 

companies to use them instead of conventional materials. In the last few decades, the use of 

composite materials has been increased significantly (Sharma and Mittal, 2010). Generally, 

composite materials consist of two (or more) phases. The first one has is the strongest phase 

which is call fiber. Fiber is used to reinforce the other phase which it is usually polymer. 

Depending on the application and manufacturing process, fiber can be continuous or 

discontinuous and longitudinal or randomly oriented in the matrix. The distributed fibers in the 

matrix are used to transfer the loads to fibers (Gay et al., 2003; William and David, 2010). 

Because of the requirement of high performance, the resonance behavior of the laminated 

structures materials in aerospace structures have been studied by many researchers. For 

example, Leissa (Leissa, 1973) studied the vibration of plate with various geometries. Crawly, 

1979 showed experimentally the natural frequency and mode shapes of aluminum plates and 

compared the results with finite element method.  

Recently, finite element method have been employed in analyzing the engineering structure. 

For instance, Reddy, 1979 used the finite element method to study the free vibration of simply-

supported plates. Han and Petyt, 1996 estimated the natural frequency of laminated rectangular 

plates by extending the p-version finite element method. Also, different boundary conditions 

are using to study the free vibration for rectangular plates by Hsu, 2003. Pandit et al., 2007 

analyzed the free vibration of laminated composite rectangular plate using finite element 

method. Sang and Sang-Hyun, 2008 proposed new analysis of vibration for simply supported 

composite plates. Latheswary et al., 2004 investigated the free vibration analysis of laminated 

composite plates in linear and non-linear. Akavci, 2007 examined the analysis of free vibration 

for simply supported composite plates. Andrzej and Gawryluk, 2016 studied the modal analysis 

for three composite blades and the results of natural frequencies and mode shapes were 

compared with the modal analysis for the cantilever composite beam and the fixed rotor with 

one composite blade. The free vibration analysis of composite plates with various boundary 

conditions were discussed in several research using several mathematical techniques (Nayak, 

2008; Alexander et al., 2012; Lopatin and Morozov, 2011). 

In this project, two models are performed to calculate the natural frequencies of clamped 

longitudinal composite plates with different dimensions. ANSYS 16.1 was used in analyzing 
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these two models. In the first model, perfect bonding between fibers and matrix was assumed.   

While, the equivalent mechanical properties of composite plate were taken into account. The 

effects of dimensions of composite plate, volume fractions and mechanical properties of the 

composite plates were studied in order to find the correction factor between the two models. 

2. MATERIAL PROPERTIES AND VOLUME FRACTIONS 

The mechanical properties of fiber and matrix that are used in this work are presented in Table 

1.  
 

Table 1. Fiber and Matrix Properties 

 

 

 

 

 

 

 

The effective mechanical properties of the composite plates depend on mechanical properties 

of matrix and fiber. In order to calculate the equivalent mechanical properties, the following 

procedure can be used (Gay et al., 2003): 

 

1. The total volume fraction and the matrix volume fraction: in this work , the fiber volume 

fraction changes from (10%) to (40%) by increasing the volume fraction by (5%) and 

according to the following equation, the matrix volume fraction can be calculated. 

∀𝑚= 1 − ∀𝑓          1 

2. Density of composite plate was found by using rule of mixture: 

𝜌 = ∀𝑚𝜌𝑚 + ∀𝑓𝜌𝑓          2 

3. The modulus of elasticity along the direction of the fiber (Eq. 3)   

𝐸1 = ∀𝑚𝐸𝑚 + ∀𝑓𝐸𝑓          3 

4. The modulus of elasticity in the transverse direction to the fiber axis was calculated 

from Eq. 4,  

𝐸2 = 𝐸𝑚 [
1

(1−∀𝑓)+(
𝐸𝑚
𝐸𝑓

)∀𝑓

]          4 

5. Shear modulus of composite was computed from Eq. 5,  

𝐺2 = 𝐺𝑚 [
1

(1−∀𝑓)+(
𝐺𝑚
𝐺𝑓

)∀𝑓

]         5 

No. Property Unit Fiber Matrix 

1 E Pascal. 3.79E+11 1.70E+09 

2 G Pascal. 1.55E+11 7.00E+08 

3 𝜈 --- 0.35 0.3 

4 𝜌 3kg/m 1440 1250 
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6. Poisson Ratio was determined from Eq. 6, 

𝜈12 = ∀𝑚𝜈𝑚 + ∀𝑓𝜈𝑓          6 

According to these steps, the equivalent mechanical and physical properties of composite plates 

for different fiber volume fractions can be listed in Table 2. 

 

Table 2. The equivalent mechanical and physical properties of composite plates.  

No. 

Fiber 

Volume 

Fraction 

∀𝒇 

Matrix 

Volume 

Fraction 

∀𝒎 

Modulus 

of 

Elasticity 

E1(N/m2) 

Modulus 

of 

Elasticity 

E2(N/m2) 

Modulus of  

Rigidty 

G12(N/m2) 

Poisson 

Ratio  

ν12 

Density 

ρ(kg/m3) 

1 0.1 0.9 3.94E+10 1.89E+09 7.77E+08 0.305 1269 

2 0.15 0.85 5.83E+10 2E+09 8.23E+08 0.3075 1278.5 

3 0.2 0.8 7.72E+10 2.12E+09 8.74E+08 0.31 1288 

4 0.25 0.75 9.6E+10 2.26E+09 9.32E+08 0.3125 1297.5 

5 0.3 0.7 115E+10 2.42E+09 9.98E+08 0.315 1307 

6 0.35 0.65 134E+10 2.61E+09 107E+08 0.3175 1316.5 

7 0.4 0.6 153E+10 2.82E+09 116E+08 0.32 1326 

3. FIRST FINITE ELEMENT MODEL 

In this model, the fibers and matrices were represented as two different materials which are 

connected to each other by physical bond. Therefore, the mechanical and physical properties of 

fiber and matrix are used instead of the equivalent  mechanical and physical properties of 

composite plates. In this model, the element Layer 99 is used and the number of layers depend 

on the thickness of composite plate and generally  the thickness of each element considered in 

this work does not exceed 1 mm. In order to calculate the dimensions of this model and 

according to fiber volume fraction, dimensions of plate (length , width and thickness) and cross 

section area of fiber,  the number of fibers , the number of matrices and the width of matrices 

can be calculated using the following procedure: 

 

1. Calculating the volume of composite plate and the volume of one fiber using the 

following equations: 

𝑉𝑇 = 𝐿 ∗ 𝑊 ∗ 𝑡          7 

𝑉𝑓 = 𝜋𝑟2 ∗ 𝐿          8 

2. Calculating the number of fiber (n) for any fiber volume fraction using the following 

equation and assuming that the distance between any two neighboring fibers is constant 

along the composite plate: 

∀𝑓=
𝑉𝑓

𝑉𝑇
=

𝑛∗𝜋𝑟2∗𝐿

𝐿∗𝑊∗𝑡
=

𝑛∗𝜋𝑟2

𝑊∗𝑡
         9 
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𝑛 =
∀𝑓∗𝑊∗𝑡

𝜋𝑟2           10 

3. As maintained previously, the volume fraction of fiber and the width of composite plate 

are given. Also, the center of fiber lies on the center of cross section area of composite 

plate (i.e. lies at (t/2)). Now the number ,dimensions and number of layers of matrices 

and the number of fibers can be calculated. 

In this model, the size of element is one of the most important factor in order to get an accurate 

result. Therefore, the suitable size of element is found for each volume fraction. 

4. SECOND FINITE ELEMENT MODEL 

In this model, the composite plate is represented as one material with equivalent mechanical 

and physical properties calculated previously (see Table 2). The element Layer 99 is also used 

in this model and the thickness of each layer in this model does not exceed (1 mm) as shown in 

Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 1. Clamped longitudinal composite plates (∀𝒇= 𝟎. 𝟐𝟓  ∀𝒎= 𝟎. 𝟕𝟓 𝐰𝐢𝐭𝐡 𝐋 = 𝟎. 𝟑 ×  𝐖 =

𝟎. 𝟑 𝐦 𝐚𝐧𝐝 𝐭 = 𝟐 𝐦𝐦).  

 

 

5. DIMENSIONS AND BOUNDARY CONDITIONS OF COMPOSITE PLATE 
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The length and width of composite plates considered in this work are changed in order to study 

the effect of dimensions of plate on the natural frequency. On the other hand , the thickness of 

plate is changed and its values are (2 ,3 , 4 and 5) mm. These dimensions of plates can be 

summarized in Table 3. The clamped of the four ends of plates is the boundary condition used  

in this work. 

Table 3. Dimensions of Composite Plates. 

No. Length (m) Width (m) Thickness (mm) 

1. 0.1 0.1 2, 3, 4 and 5 

2. 0.1 0.2 2, 3, 4 and 5 

3. 0.1 0.3 2, 3, 4 and 5 

4. 0.2 0.1 2, 3, 4 and 5 

5. 0.2 0.2 2, 3, 4 and 5 

6. 0.2 0.3 2, 3, 4 and 5 

7. 0.3 0.1 2, 3, 4 and 5 

8. 0.3 0.2 2, 3, 4 and 5 

9. 0.3 0.3 2, 3, 4 and 5 

6. RESULTS 

In this work, several cases were studied including two finite element models of composite plates 

for different dimensions and thickness. Natural frequency ratio of the two models of composite 

plates can be predicted from Table 4. The results of natural frequencies that obtained from finite 

element analysis have been validated using ANSYS 16.1. Figs. 2, 4, 6 and 8 shows the 

comparison between the first, second, third, and fourth natural frequencies of the first model 

for different plate thickness due to changing in fiber volume fraction for different dimensions 

of plate using the first model while Figs. 3, 5, 7 and 9 shows the comparison between first, 

second, third, and fourth natural frequencies of the second model. The increasing in the 

thickness of composite plate increases the natural frequency with fixing the fiber volume 

fraction ratio, dimensions of composite plate and number of modes. 

Fig. 10 represents the comparison between the frequency ratio due to changing in aspect ratio 

of plate (Length/ Width) for different plate thickness and mode numbers. It can be seen that the 

frequency ratio was increased proportionally with the increase in (Length/ Width) ratio for 

different plate thickness in the first, second, third and fourth mode respectively. Also, the 

relation between the natural frequencies calculating by these two model and the (length/width) 

ratio for first, second, third and fourth mode are shown in Figs. 11, 12, and 13. When the 

thickness of composite plate decreases, the relation between the natural frequencies calculating 

by these two model and the (length/width) ratio be more uniform and the error be small.  
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(a) L=0.1 m and W=0.1 m . (b) L=0.1 m and W=0.2 m . 

  
(c) L=0.1 m and W=0.3 m . (d) L=0.2 m and W=0.1 m . 

  
(e )L=0.2 m and W=0.2 m . (f) L=0.2 m and W=0.3 m . 

  
(g) L=0.3 m and W=0.1 m . (h) L=0.3 m and W=0.2 m . 

 
(i) L=0.3 m and W=0.3 m . 

Fig. 2. Comparison Between the First Natural Frequencies for Different Plate Thickness 

Due to Change in Fibre Volume Fraction for Different Dimensions of Plate Using the 

First Model. 
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(a) L=0.1 m and W=0.1 m . (b) L=0.1 m and W=0.2 m . 

  
(c) L=0.1 m and W=0.3 m . (d) L=0.2 m and W=0.1 m . 

  
(e )L=0.2 m and W=0.2 m . (f) L=0.2 m and W=0.3 m . 

  
(g) L=0.3 m and W=0.1 m . (h) L=0.3 m and W=0.2 m . 

 
(i) L=0.3 m and W=0.3 m . 

Fig. 3. Comparison Between the First Natural Frequencies for Different Plate Thickness 

Due to Change in Fibre Volume Fraction for Different Dimensions of Plate Using the 

Second Model. 
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(c) L=0.1 m and W=0.1 m . (d) L=0.1 m and W=0.2 m . 

  
(c) L=0.1 m and W=0.3 m . (d) L=0.2 m and W=0.1 m . 

  
(e )L=0.2 m and W=0.2 m . (f) L=0.2 m and W=0.3 m . 

  
(g) L=0.3 m and W=0.1 m . (h) L=0.3 m and W=0.2 m . 

 
(i) L=0.3 m and W=0.3 m . 

Fig. 4. Comparison Between the Second Natural Frequencies for Different Plate 

Thickness Due to Change in Fibre Volume Fraction for Different Dimensions of Plate 

Using the First Model. 
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(a) L=0.1 m and W=0.1 m . (b) L=0.1 m and W=0.2 m . 

  
(c) L=0.1 m and W=0.3 m . (d) L=0.2 m and W=0.1 m . 

  
(e )L=0.2 m and W=0.2 m . (f) L=0.2 m and W=0.3 m . 

  
(g) L=0.3 m and W=0.1 m . (h) L=0.3 m and W=0.2 m . 

 
(i) L=0.3 m and W=0.3 m. 

Fig. 5. Comparison Between the Second Natural Frequencies for Different Plate 

Thickness Due to Change in Fibre Volume Fraction for Different Dimensions of Plate 

Using the Second Model. 
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(a) L=0.1 m and W=0.1 m . (b) L=0.1 m and W=0.2 m . 

  
(c) L=0.1 m and W=0.3 m . (d) L=0.2 m and W=0.1 m . 

  
(e )L=0.2 m and W=0.2 m . (f) L=0.2 m and W=0.3 m . 

  
(g) L=0.3 m and W=0.1 m . (h) L=0.3 m and W=0.2 m . 

 
(i) L=0.3 m and W=0.3 m . 

Fig. 6. Comparison Between the Third Natural Frequencies for Different Plate Thickness 

Due to Change in Fibre Volume Fraction for Different Dimensions of Plate Using the 

First Model. 
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(a) L=0.1 m and W=0.1 m . (b) L=0.1 m and W=0.2 m . 

  
(c) L=0.1 m and W=0.3 m . (d) L=0.2 m and W=0.1 m . 

  
(e )L=0.2 m and W=0.2 m . (f) L=0.2 m and W=0.3 m . 

  
(g) L=0.3 m and W=0.1 m . (h) L=0.3 m and W=0.2 m . 

 
(i) L=0.3 m and W=0.3 m . 

Fig. 7. Comparison Between the Third Natural Frequencies for Different Plate Thickness 

Due to Change in Fibre Volume Fraction for Different Dimensions of Plate Using the 

Second Model. 
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(a) L=0.1 m and W=0.1 m . (b) L=0.1 m and W=0.2 m . 

  
(c) L=0.1 m and W=0.3 m . (d) L=0.2 m and W=0.1 m . 

  
(e )L=0.2 m and W=0.2 m . (f) L=0.2 m and W=0.3 m . 

  
(g) L=0.3 m and W=0.1 m . (h) L=0.3 m and W=0.2 m . 

 
(i) L=0.3 m and W=0.3 m . 

Fig. 8. Comparison Between the Forth Natural Frequencies for Different Plate Thickness 

Due to Change in Fibre Volume Fraction for Different Dimensions of Plate Using the 

First Model. 
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(a) L=0.1 m and W=0.1 m . (b) L=0.1 m and W=0.2 m . 

  
(c) L=0.1 m and W=0.3 m . (d) L=0.2 m and W=0.1 m . 

  
(e )L=0.2 m and W=0.2 m . (f) L=0.2 m and W=0.3 m . 

  
(g) L=0.3 m and W=0.1 m . (h) L=0.3 m and W=0.2 m . 

 
(i) L=0.3 m and W=0.3 m . 

Fig. 9. Comparison Between the Forth Natural Frequencies for Different Plate Thickness 

Due to Change in Fibre Volume Fraction for Different Dimensions of Plate Using the 

Second Model. 
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(a) t=2 mm. (b) t=3 mm. 

  
(c) t=4 mm. (d) t=5 mm. 

Fig. 10. Comparison Between the First Natural Frequency Ratio (Frequency calculating 

by Second Model /Frequency calculating by First Model) Due to Change Aspect Ratio of 

Plate (Length/ Width) for Different  Plate Thickness. 

 

  
(a) t=2 mm. (b) t=3 mm. 

  
(c) t=4 mm. (d) t=5 mm. 

Fig. 11. Comparison Between the Second Natural Frequency Ratio (Frequency 

calculating by Second Model /Frequency calculating by First Model) Due to Change 

Aspect Ratio of Plate (Length/ Width) for Different Plate Thickness. 
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(a) t=2 mm. (b) t=3 mm. 

  
(c) t=4 mm. (d) t=5 mm. 

Fig. 12. Comparison Between the Third Natural Frequency Ratio (Frequency 

calculating by Second Model /Frequency calculating by First Model) Due to Change 

Aspect Ratio of Plate (Length/ Width) for Different  Plate Thickness. 

 

  
(a) t=2 mm. (b) t=3 mm. 

  
(c) t=4 mm. (d) t=5 mm. 

Fig. 13. Comparison Between the Fourth Natural Frequency Ratio (Frequency 

calculating by Second Model /Frequency calculating by First Model) Due to Change 

Aspect Ratio of Plate (Length/ Width) for Different Plate Thickness. 
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Table 4. Natural Frequency Ratio (Frequency Second Model /Frequency First Model) with 

Ratio of Plate (Length/ Width) for Different Plate Thickness. 

No 𝜷 =
𝒇𝟐

𝒇𝟏
 

Thickness Natural Frequency Ratio function of Plate Ratio  

1 𝑡 = 2𝑚𝑚 𝛽 =  −0.2249𝛼3 + 0.4933𝛼2 + 2.3676𝛼 − 0.398 

𝑡 = 3𝑚𝑚 𝛽 =   0.0217𝛼3 − 0.8965𝛼2 + 4.2741𝛼 − 0.7643 

𝑡 = 4𝑚𝑚 𝛽 =    0.2356𝛼3 − 1.9936𝛼2 + 5.4878𝛼 − 0.9544 

𝑡 = 5𝑚𝑚 𝛽 =    0.3434𝛼3 − 2.5063𝛼2 + 5.9249𝛼 − 0.9688 

2 𝑡 = 2𝑚𝑚 𝛽 =   0.043𝛼3 −  0.0665𝛼2 +  0.8936𝛼 +  0.7185 

𝑡 = 3𝑚𝑚 𝛽 = −0.1219𝛼3 + 0.6921𝛼2 − 0.1116𝛼 + 1.2742 

𝑡 = 4𝑚𝑚 𝛽 = −0.2195𝛼3 + 1.1259𝛼2 − 0.7837𝛼 + 1.6259 

𝑡 = 5𝑚𝑚 𝛽 = −0.2409𝛼3 + 1.2151𝛼2 − 1.0153𝛼 + 1.7764 

3 𝑡 = 2𝑚𝑚 𝛽 = −0.0357𝛼3 + 0.3158𝛼2 − 0.0922𝛼 + 1.2424 

𝑡 = 3𝑚𝑚 𝛽 =    0.1457𝛼3 −  0.5075𝛼2 + 0.8057𝛼 + 1.2204 

𝑡 = 4𝑚𝑚 𝛽 =      0.1923𝛼3 −  0.778𝛼2 + 1.1481𝛼 + 1.2228 

𝑡 = 5𝑚𝑚 𝛽 =    0.2385𝛼3 − 1.0441𝛼2 + 1.4828𝛼 + 1.1603 

4 𝑡 = 2𝑚𝑚 𝛽 =   0.1446𝛼3 − 0.7133𝛼2 + 1.2646𝛼 + 0.8561 

𝑡 = 3𝑚𝑚 𝛽 =   0.0798𝛼3 − 0.3611𝛼2 + 0.7284𝛼 + 1.1946 

𝑡 = 4𝑚𝑚 𝛽 =     0.2483𝛼3  − 1.1648𝛼2 + 1.682𝛼 + 0.9965 

𝑡 = 5𝑚𝑚 𝛽 =   0.3169𝛼3 − 1.5267𝛼2 + 2.1503𝛼 + 0.8731 

 

 

7. CONCLUSION 

From the conducted results, it has been observed that the natural frequency increases when the 

value of fiber volume fraction increases. The increasing in the fiber volume fraction leads to 

increase in the modules of elasticity of composite plate.  

It has been found that when the plate is fixed from all the sides, the highest natural frequency 

is achieved compared to other considered boundary conditions. 

Furthermore, the numerical equations that derived from these relations as a function of the 

(length/width) ratio was used to investigate the natural frequencies for longitudinal composite 

plates. 

  



Kufa Journal of Engineering, Vol. 10, No. 1, January 2019               109 

 
 

8. REFERENCES  

Akavci S. S. Buckling and free vibration analysis of symmetric and antisymmetric laminated 

composite plates on an elastic foundation. Jour.of Reinf, Plastic & Composites; 2007. 

Alexander J., Kumar H. A., Augustine B. “Frequency Response of Composite Laminates at 

Various Boundary Conditions”. International Journal of Engineering Science Invention (IJESI), 

2012, ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ǁ PP.11-15. 

Andrzej Teter, Jarosław Gawryluk. Experimental modal analysis of a rotor with active 

composite blades. Composite Structures 2016;153:451–467. 

Edward F. Crawley. The Natural Modes of Graphite/Epoxy Cantilever Plates and Shells. 

Journal of Composite Materials 1979;13:195. 

Gay D., Hoa S. V., Tsai S. W. Composite Materials Design and Applications. Book, CRC Press 

LLC; 2003. 

Han W. and Petyt M.. Linear vibration analysis of laminated rectangular plates using the 

hierarchical finite element method—I, Free vibration analysis. Computers &amp Structures 

1996;61:705-712.  

Hsu, M.-H. Vibration analysis of isotropic and orthotropic plates with mixed boundary 

conditions. Tamkang Journal of Science and Engineering 2003;6:217-226. 

Latheswary S., Valsajian K. V., Rao Y V K S. Free vibration analysis of laminated plates using 

higher-order shear deformation theory. IE(I) Jornal-AS; 2004. 

Lopatin A.V., Morozov E.V. Fundamental frequency and design of the CFCF composite 

sandwich plate. Composite Structures 2011;93: 983–991 

Leissa A. W.. The free vibration of rectangular plates. Journal of Sound and Vibration 

1973;31:257-293. 

Pandit, M. K., Haldar, S., Mukhopadhyay, M.. Free vibration analysis of laminated composite 

rectangular plate using finite element method. Jour. Of Reinforced Plastic & composites; 2007. 

Parsuram Nayak. Vibration Analysis of Woven Fiber Glass/Epoxy Composite Plates. M.Sc. 

Thesis, Department of Civil Engineering, National Institute of Technology Rourkela, Orissa, 

India; 2008.  

Reddy J. N.. Free vibration of ant symmetric, angle-ply laminated plates including transverse 

shear deformation by the finite element method. Journal of Sound and Vibration 1979;66: 565-

576. 

Sang Wook Kang, Sang-Hyun Kim. Vibration analysis of simply supported rectangular plates 

with unidirectional, arbitrarily varying thickness. Jour. Of Sound & Vibr 2008;312:551-562. 



110                  Firas T. Al-Maliky 

Sharma. A. K., Mittal. N.D. Review on stress and vibration analysis of composite plate. Journal 

Applied Sci 2010;10(23):3156-3166. 

William D. Callister, Jr. and David G. Rethwisch. Materials Science and Engineering An 

Introduction. John Wiley & Sons, Inc; 2010. 


