

# Prediction of Creep Strain for Self-Compacting Concrete by

## **Artificial Neural Networks**

Ammar S. Al-Rihimy<sup>1</sup>, Basil S. Al-Shathr<sup>2</sup> and Tareq S. Al-Attar<sup>3</sup>

<sup>1</sup> PhD candidate, University of Technology, Baghdad, Iraq Email: <u>aalrahamy@yahoo.com</u>

<sup>2</sup> PhD, Asst. Prof., University of Technology, Baghdad, Iraq. Email: <u>basil1958a@yahoo.com</u>

<sup>3</sup>PhD, Prof., University of Technology, Baghdad, Iraq. Email: <u>thshkhma@yahoo.com</u>

http://dx.doi.org/10.30572/2018/kje/100207

## ABSTRACT

Artificial Neural Networks, ANN, technique is a computerized system that is built to simulate the neural networks in the human brain. Throughout the recent couple decades, ANNs had solved with a good degree of success many problems. In the present work, ANN model was developed by SPSS software for estimating creep strain development of self-compacting concrete mixes produced with different types of Portland cement, Type I and Type IL. The independent variables in this model were: age, compressive strength, modulus of elasticity, applied stress, initial strain, water to powder ratio, water to binder ratio, filler to cement ratio, clinker to cement ratio, aggregate size, and slump flow. The used data for model building were local, extracted from the present work. The predictions of the model have been compared to those of an international well-known model, ACI 209 Committee. The comparison revealed the good reliability of the present models in predictions (r = 0.998).

**KEYWORDS:** Artificial Neural Networks, Creep, Modelling, Portland-limestone cement, Self-compacted concrete.

#### **1. INTRODUCTION**

Artificial Neural Networks, ANN, were invented to simulate the way in which the human brain works. The structure of the network is mainly built of a large number of highly interconnected processing elements (neurons), working in parallel to solve a certain problem. Neural networks learn by examples, which must be selected carefully, otherwise useful time is wasted, or even worse where the network might be functioning incorrectly (Awodele and Jegede, 2009).

The nonlinear and inelastic behavior of concrete under service loads has complicated the serviceability calculations in codes. Creep is one of the time-dependent deformations that causes part of this complexity.

Maia and Figueiras, (2012) revealed that the loading time and stress level have a serious influence on the deformation of a SCC used in pre-stressed bridge girders. It was concluded if the subjected load is about 30% of the actual strength, even if it is applied within the first 24 hours, the acceptability of the Eurocode 2 expressions to predict the stress depends on strain after one year. Therefore, it was recommended to measure deformations during at least one year to clarify the tendency.

ACI Committee, (2014) studied a direct solution methods estimating by that the response behavior at time step with a computational effort regarding to that of an elastic solution. They have been substantiated logically for laboratory conditions and intended for structures designed using the (ACI Committee, 2014). They are not intended to be used for the creep recovery analysis due to unloading, but they primarily applied to an isothermal and relatively uniform environment.

Researchers introduced many definitions for ANN in accordance to their points of view. According to Hussain, (2017), ANNs, are similar to the biological neuron, consisting of very tiny computational elements in very a large number. Perception is the main structural element inside the ANN. Meanwhile IBM SPSS Neural Networks, (2010) see that neural networks are the preferred tool for many predictive data mining applications because of their power, flexibility, and ease of use. The term neural network used by IBM Software Business Analytics IBM Corporation, (2012) applies to a loosely related family of models, characterized by a large parameter space and flexible structure. Specific definitions of neural networks are as varied as the fields in which they are used. It is a parallel distributed big processor that has a natural propensity for preserving experiential knowledge and making it available for use.

### 2. APPLICATIONS OF ANN IN CIVIL ENGINEERING

Predictive neural networks are practically valuable in applications where the fundamental process is complex, such as IBM SPSS Neural Networks, (2010):

- a. Consumer demand estimating to streamline production and costs of delivery.
- b. The probability of response prediction to direct mail marketing in order to determine the suitable offer to send it on a mailing list.
- c. Identifying fraudulent transactions in a database for insurance claims.

Recently, researchers adopted the ANN in data processing in the field of durability, and they are very efficient compared with the simple regression method from experimental data.

Hodhod and Salama, (2013) research results proved that using ANN models to predict the expansion in concrete cylinders is practical and valuable. They also investigated the prediction of ANN model to determine its appropriateness in modeling for assessing the sulfate resistance of OPC and mineral admixture. Hodhod, (2013) developed an artificial neural network model to evaluate chloride diffusivity in high performance concrete. In geotechnical- structural aspect, Ismael [10] developed a model to test the laterally loaded piles under a horizontally scoured condition.

### 3. MATERIALS AND METHODS:

Creep test was done according to the ASTM C512 [11] on cylindrical specimens for 4 SCC mixes with 2 strength levels, 40 and 60 MPa, and 2 Portland cement types, Type I and IL. The test included 240 days of loading. All details of mixes are described in Table 1 (Al-Attar et al., 2017).

|       | Binder,          | kg/m <sup>3</sup> | Limestone                  |     | egate,<br>/m <sup>3</sup> | Max<br>Size       | Water,            | Visco                     |
|-------|------------------|-------------------|----------------------------|-----|---------------------------|-------------------|-------------------|---------------------------|
| Mix   | Cement<br>- Type | Silica<br>Fume    | Dust,<br>kg/m <sup>3</sup> | FA  | CA                        | of<br>Agg.,<br>mm | kg/m <sup>3</sup> | Crete<br>L/m <sup>3</sup> |
| AI40  | 400 - I          |                   |                            |     |                           |                   |                   |                           |
| AIL40 | 400 –<br>IL      | 0                 | 100                        |     | 000                       | 20 152            | 152               | 8                         |
| BI60  | 450 - I          |                   |                            | 764 | 800                       |                   |                   |                           |
| BIL60 | 450 –<br>IL      | 50                | 50                         |     |                           | 10                | 155               | 13                        |

#### Table 1. Mix Details.

#### 4. EQUATIONS OF ANN MODELLING

The general equations used in predicting the models of the present work are illustrated below according to their hierarchical:

Stand. Input<sub>i</sub>(
$$X_{i}^{*}$$
) =  $\frac{\text{Normalized Input}(X_{i}) - \text{mean}_{X}(\overline{X})}{\text{Std. deviation}(\sigma_{X})}$  1

Hidden 
$$in_j = Bias_{input_j} + \sum_{i=1}^{n} \left( Vmatrix_{i,j} \times X_i^* \right)$$
 2

Hidden out<sub>j</sub> = 
$$\frac{2}{1 + Exp^{-2 \times Hidden in_j}} - 1$$
 3

Stand. Output<sub>K</sub> = Bias<sub>output<sub>K</sub></sub> + 
$$\sum_{j=1}^{m}$$
 (Wmatrix<sub>j,K</sub> × Hidden out<sub>j</sub>) 4

Normalized Out Value<sub>K</sub> = Standarized Output<sub>K</sub> × 
$$\sigma_v + \overline{Y}$$
 5

Out Predicted value<sub>i</sub> = Normalized Out Value<sub>i</sub> 
$$\times$$
 Maximum value 6

Where:

Vmatrix: Predicted Parameter Input

#### Wmatrix: Predicted Parameter Output

BIAS: matrices can deliver valued information about the confounding of the effects and the estimation of the selected contrasts. If there is a confounded of two effects, then entry corresponding to them will be nonzero in the BIAS matrix; but if the effects are orthogonal, the entry will be zero. This article is mainly beneficial in designs with un-patterned empty cells.

#### 5. MODELING OF CREEP STRAIN

A creep prediction model was developed as MCS model and was based on the data of the present work. The independent variables in this models were: loading age, compressive strength, modulus of elasticity, applied stress, initial strain, water to powder ratio, water to binder ratio, filler to cement ratio, clinker to cement ratio, aggregate size, and slump flow.

A model represented by Tables 2 - 5 and Figs. 1 - 3 was adopted.

Tables 2A and B explain the descriptive statistics for real and normalized creep data. Table 3 introduces the modelling summary and case processing summary which discovered that a total of (96) sets of creep data were distributed into (65.6%) for training, (15.6%) for testing, and (18.8%) for holdout. For each scale variable, the relative errors were (0.004) through training, testing (0.005), and holdout (0.007).

| Descriptive Statistics |    |         |         |          |                |  |
|------------------------|----|---------|---------|----------|----------------|--|
|                        | Ν  | Minimum | Maximum | Mean     | Std. Deviation |  |
| Age                    | 96 | 1.00    | 240.00  | 87.0000  | 80.91477       |  |
| FCwithTime             | 96 | 9.75    | 75.40   | 50.6027  | 16.62433       |  |
| Creep                  | 96 | .00     | 1035.00 | 542.7135 | 312.74663      |  |
| WtoPowder              | 96 | .28     | .30     | .2915    | .01072         |  |
| WtoCement              | 96 | .34     | .38     | .3611    | .01905         |  |
| ApplyStress            | 96 | 16.40   | 26.80   | 21.4000  | 4.50011        |  |
| AggSize                | 96 | 10.00   | 20.00   | 15.0000  | 5.02625        |  |
| SlumpFlow              | 96 | 750.00  | 790.00  | 770.0000 | 20.10499       |  |
| DusttoCement           | 96 | .11     | .25     | .1803    | .07009         |  |
| E                      | 96 | 29.00   | 38.00   | 33.5000  | 4.05229        |  |
| InitailStrain          | 96 | 565.00  | 705.00  | 631.7500 | 57.93663       |  |
| ClinkertoCement        | 96 | .95     | 1.00    | .9750    | .02513         |  |
| Valid N (listwise)     | 96 |         |         |          |                |  |

## Table 2A. Descriptive Statistics of Real Data for Model MCS

## Table 2B. Normalization for Descriptive Statistics of Creep Data

|                    | Ν  | Minimum | Maximum | Mean  | Std. Deviation |  |
|--------------------|----|---------|---------|-------|----------------|--|
| Age                | 96 | .00     | 1.00    | .3625 | .33714         |  |
| FcwithTime         | 96 | .13     | 1.00    | .6711 | .22048         |  |
| Creep              | 96 | .00     | 1.00    | .5244 | .30217         |  |
| WtoPowder          | 96 | .93     | 1.00    | .9667 | .03351         |  |
| WtoCement          | 96 | .89     | 1.00    | .9474 | .05291         |  |
| ApplyStress        | 96 | .61     | 1.00    | .7985 | .16791         |  |
| AggSize            | 96 | .50     | 1.00    | .7500 | .25131         |  |
| SlumpFlow          | 96 | .95     | 1.00    | .9747 | .02545         |  |
| DusttoCement       | 96 | .44     | 1.00    | .7200 | .28147         |  |
| E                  | 96 | .76     | 1.00    | .8816 | .10664         |  |
| InitialStrain      | 96 | .80     | 1.00    | .8961 | .08218         |  |
| ClinkertoCement    | 96 | .95     | 1.00    | .9750 | .02513         |  |
| Valid N (listwise) | 96 |         |         |       |                |  |

#### Descriptive Statistics

## Table 3. Modelling Summary and Case Processing Summary for Model $M_{CS}$

|          |          | N  | Percent |
|----------|----------|----|---------|
| Sample   | Training | 63 | 65.6%   |
|          | Testing  | 15 | 15.6%   |
|          | Holdout  | 18 | 18.8%   |
| Valid    |          | 96 | 100.0%  |
| Excluded |          | 0  |         |
| Total    |          | 96 |         |

**Case Processing Summary** 

| Model Summary |                      |                                                                     |  |  |
|---------------|----------------------|---------------------------------------------------------------------|--|--|
| Training      | Sum of Squares Error | .126                                                                |  |  |
|               | Relative Error       | .004                                                                |  |  |
|               | Stopping Rule Used   | 1 consecutive step<br>(s) with no decrease<br>in error <sup>a</sup> |  |  |
|               | Training Time        | 0:00:00.02                                                          |  |  |
| Testing       | Sum of Squares Error | .036                                                                |  |  |
|               | Relative Error       | .005                                                                |  |  |
| Holdout       | Relative Error       | .007                                                                |  |  |

Dependent Variable: Creep

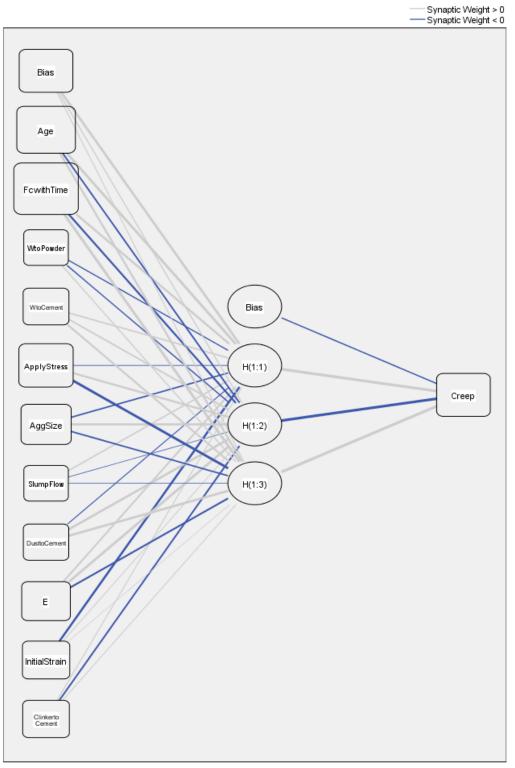
a. Error computations are based on the testing sample.

## Table 4. Details of Network Information for Model $\ensuremath{M_{\text{CS}}}$

| Network Information |
|---------------------|
|---------------------|

| Input Layer     | Covariates                   | 1                        | Age                |   |
|-----------------|------------------------------|--------------------------|--------------------|---|
|                 |                              | 2                        | FcwithTime         |   |
|                 |                              | 3                        | WtoPowder          |   |
|                 |                              | 4                        | WtoCement          |   |
|                 |                              | 5                        | ApplyStress        |   |
|                 |                              | 6                        | AggSize            |   |
|                 |                              | 7                        | SlumpFlow          |   |
|                 |                              | 8                        | DusttoCement       |   |
|                 |                              | 9                        | E                  |   |
|                 |                              | 10                       | InitialStrain      |   |
|                 |                              | 11                       | ClinkertoCement    |   |
|                 | Number of Units <sup>a</sup> |                          | 1                  | 1 |
|                 | Rescaling Method for C       | ovariates                | Standardized       |   |
| Hidden Layer(s) | Number of Hidden Laye        | ers                      |                    | 1 |
|                 | Number of Units in Hid       | den Layer 1 <sup>a</sup> |                    | 3 |
|                 | Activation Function          |                          | Hyperbolic tangent |   |
| Output Layer    | Dependent Variables          | 1                        | Creep              |   |
|                 | Number of Units              |                          |                    | 1 |
|                 | Rescaling Method for S       | cale Dependents          | Standardized       |   |
|                 | Activation Function          |                          | Identity           |   |
|                 | Error Function               |                          | Sum of Squares     |   |

a. Excluding the bias unit



Hidden layer activation function: Hyperbolic tangent
Output layer activation function: Identity

## Fig. 1. ANN Structure for the Model $M_{\mbox{\scriptsize CS}}$

Table 5 determines the estimated parameters for input and hidden layers with their predicted hidden and output layers and their corresponding biases. The weights values were introduced.

|                |                 |        | Pre            | dicted |       |  |
|----------------|-----------------|--------|----------------|--------|-------|--|
|                |                 | H      | Hidden Layer 1 |        |       |  |
| Predictor      |                 | H(1:1) | H(1:2)         | H(1:3) | Creep |  |
| Input Layer    | (Bias)          | .466   | .127           | .079   |       |  |
|                | Age             | .601   | 206-           | .342   |       |  |
|                | FcwithTime      | .382   | 333-           | .632   |       |  |
|                | WtoPowder       | 133-   | 142-           | .128   |       |  |
|                | WtoCement       | .180   | .191           | .319   |       |  |
|                | ApplyStress     | 064-   | .350           | 547-   |       |  |
|                | AggSize         | 183-   | .407           | 186-   |       |  |
|                | SlumpFlow       | .171   | 059-           | 050-   |       |  |
|                | DusttoCement    | 099-   | .450           | .460   |       |  |
|                | E               | .225   | .511           | 291-   |       |  |
|                | InitialStrain   | 433-   | .069           | .008   |       |  |
|                | ClinkertoCement | .080   | 221-           | .079   |       |  |
| Hidden Layer 1 | (Bias)          |        |                |        | 162-  |  |
|                | H(1:1)          |        |                |        | .655  |  |
|                | H(1:2)          |        |                |        | 635-  |  |
|                | H(1:3)          |        |                |        | .957  |  |

#### Table 5. Estimated Parameter used in Model M<sub>CS</sub>



Table 6 and Fig. 2 display the importance of the independent variables. It is observed that creep was controlled by the compressive strength f 'c with time which has importance factor (27.7%) followed by the age with importance factor (20.2%) and finally by the slump flow with importance factor (2%).

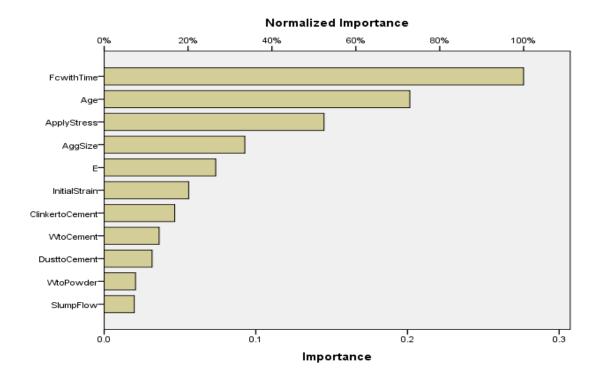


Fig. 2. Importance Values with the Parameters that Affected on the Creep

| -               | -          |                          |
|-----------------|------------|--------------------------|
|                 | Importance | Normalized<br>Importance |
| Age             | .202       | 72.9%                    |
| FcwithTime      | .277       | 100.0%                   |
| WtoPowder       | .021       | 7.5%                     |
| WtoCement       | .036       | 13.1%                    |
| ApplyStress     | .145       | 52.4%                    |
| AggSize         | .093       | 33.5%                    |
| SlumpFlow       | .020       | 7.2%                     |
| DusttoCement    | .032       | 11.4%                    |
| E               | .074       | 26.6%                    |
| InitialStrain   | .056       | 20.2%                    |
| ClinkertoCement | .047       | 16.8%                    |

Table 6. The Importance of the Independent Variables.

|                 | Importance | Importance |  |
|-----------------|------------|------------|--|
| Age             | .202       | 72.9%      |  |
| FcwithTime      | .277       | 100.0%     |  |
| WtoPowder       | .021       | 7.5%       |  |
| WtoCement       | .036       | 13.1%      |  |
| ApplyStress     | .145       | 52.4%      |  |
| AggSize         | .093       | 33.5%      |  |
| SlumpFlow       | .020       | 7.2%       |  |
| DusttoCement    | .032       | 11.4%      |  |
| E               | .074       | 26.6%      |  |
| InitialStrain   | .056       | 20.2%      |  |
| ClinkertoCement | .047       | 16.8%      |  |

Independent Variable Importance

The program customs same procedure to attain the estimated output data from Eqs. 1 - 6 as showed in article (3).

The relationship between the observed and the predicted values for Model MCS were displayed in Fig. 3. It is documented that ANN offers logical creep prediction with respect to age, compressive strength, modulus of elasticity, applied stress, initial strain, water to powder ratio, water to binder ratio, filler to cement ratio, clinker to cement ratio, aggregate size, and slump flow and attained a  $R^2$  of 0.996.

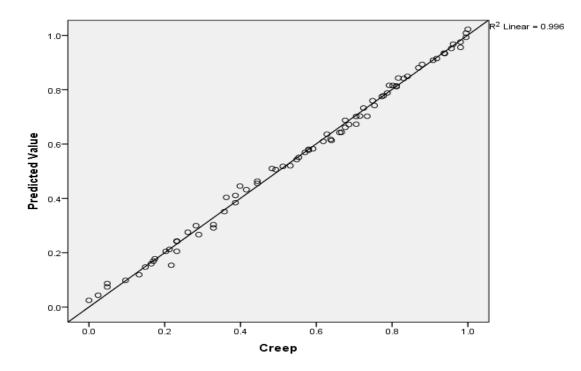
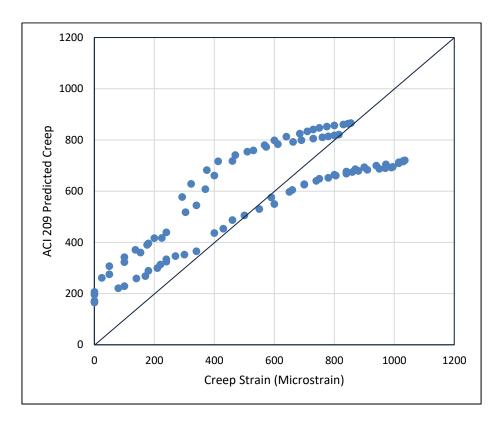


Fig. 3. Relationship between the Observed and the Predicted Values for Model M<sub>CS</sub>

From Fig. 4, it could be concluded that the ACI 209 model has overestimated the creep strain for the present work (r = 0.82). Otherwise, when using model MCS to predict creep strain it gives better accurate predictions (r = 0.998).



# Fig. 4. Relationship between the observed and the predicted values for ACI 209 model (data from prism work)

## 6. CONCLUSIONS

- 1. ANN could be adopted to model time-dependent deformations of concrete, such as creep.
- 2. MCS model was developed by adopting ANN. This model comprised available and easy to get variables. These variables were: age, compressive strength, modulus of elasticity, applied stress, initial strain, water to powder ratio, water to binder ratio, filler to cement ratio, clinker to cement ratio, aggregate size, and slump flow.
- 3. The predictions of this model were highly correlated to the experimental observations, r = 0.998.
- 4. The comparisons with the ACI 209 model proved the good reliability of the developed model MCS.

#### 7. REFERENCES

ACI Committie 318 (2014), "Building Code Requirments for Structural Concrete". ACI Committee, USA.

Al-Attar, B.S., Al-Shathr, B. S., and Al-Rihimy, A. S., "Creep Strain Development of Self-Compacting Portland Limestone Cement Concrete". In The First MoHESR and HCED Iraqi Scholars Conference in Australia 5-6 December, 2017, Melbourne, Australia, 2017.

ASTM C512/C512M, (2015). Standard test method for creep of concrete in compression. In ASTM.

Awodele, O. and Jegede, O., (2009), "Neural networks and its application in engineering". Science & IT.

Hodhod, O.A. and Ahmed, H.I., (2013), "Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete". HBRC journal, 9(1), pp.15-21.

Hodhod, O.A. and Salama, G., (2013), "Simulating USBR4908 by ANN modeling to analyse the effect of mineral admixture with ordinary and pozzolanic cements on the sulfate resistance of concrete". HBRC Journal, 9(2), pp.109-117.

Hussain, B. A. S. (2017), "Experimental and Theoretical Studies of the Physical and Chemical Properties of Heavey Metal leachate from Solidified/Stabilized Cementitious Materials". Baghdad: Ph.D Thesis, University of Baghdad, Iraq.

IBM Corporation, "IBM SPSS Neural Networks," IBM Corporation, USA, 2012.

Inc, SPSS, IBM SPSS Neural Networks 19, USA: SPSS Inc, 2010.

Ismael, O.K. and Han, J., (2015), "March. Model Tests of Laterally Loaded Piles under a Horizontally Scoured Condition". In IFCEE 2015International Association of Foundation DrillingDeep Foundation InstitutePile Driving Contractors AssociationAmerican Society of Civil Engineers.

Maia, L. and Figueiras, J., 2012, "Early-age creep deformation of a high strength selfcompacting concrete". Construction and Building Materials, 34, pp.602-610.

Rhodes, J.A. and Carreira+, D.J., (1982), "Prediction of creep, shrinkage, and temperature effects in concrete structures".