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ABSTRACT 

In this study, the Performance Based Design PBD method, which has been used only in seismic 

design by several codes, has been expanded to be applied to structures exposed to blast loads. 

The plastic hinge models used in PBD, which currently available for earthquake loads do not 

represent real behavior under the blast load. An analytical approach was proposed to represent 

the plastic behavior of flexural response under blast loads. The proposed model considers the 

following essential phenomena: concrete cover crushing, concrete core crushing, bar buckling 

in compression reinforcement, strain hardening in tensile reinforcement and softening in 

reinforcement bar. The proposed analytical approach has been validated with two experimental 

results of columns applied to blast loads and reasonable results has been seen 
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1. INTRODUCTION 

Over the last few decades, the increasing of terrorist attacks on civilian buildings, led to growing 

research interests on the protection of civil facilities. In the case of severe loads, the design is 

based on deformation capacity, which is called Performance Based Design (PBD), instead of 

using strength capacity. Hence, in the present study, the PBD method will be used to investigate 

the blast resistance of structural components. For seismic design, there are several codes use 

the nonlinear dynamic analysis such as ASCE/SEI 41-13, PEER 2010, ACI 374.3R-16, FEMA 

2012 and FEMA 2009 (Haselton, C.B. et al. 2016). To the authors knowledge, there are no code 

or research provide plastic hinge model for nonlinear dynamic analysis of structures applied to 

blast loads.  

The seismic plastic hinge model was used in the nonlinear dynamic analysis in such cases, 

where the validity is questionable and need to be investigated. The researches done by Draganic 

and Sigmund, 2012, Kulkarni and Sambireddy, 2014, Vinothini and S. Elavenil, 2014, Priyanka 

and Rajeeva, 2015, and Shinde et al, 2016 are good examples of using seismic plastic hinge in 

dynamic analysis of structures applied to blast loads. The main objectives of the present study ’s 

are to apply the PBD philosophy to structural components subjected to external explosions.  

2. ASCE 41-13 PLASTIC HINGE MODEL VALIDATION UNDER BLAST LOADS  

ASCE 41-13, 2013 assumed that the nonlinear load-deformation relation is based on 

experimental evidence or taken from specified tables showing deformation limits. The typical 

ASCE 41-13 load-deformation relation is shown in Fig. 1, where deformations are expressed 

using terms, such as strain, curvature, rotation or elongation. Generally, the typical plastic hinge 

model is described by Modeling Parameters MPs and Acceptance Criteria (Ghannoum. W. M., 

2014). The parameters (a) and (b), which can be found from ASCE 41-13 refer to post-yield 

deformation or plastic deformation. When the load-deformation relation is used to express the 

flexural response, it is given as moment-rotation relation for the plastic hinge at a section. 
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Fig. 1. ASCE 41-13 load-deformation relationship. 

The ASCE 41-13 Plastic Hinge Model was applied to the column tested by Kadhom B., 2016. 

The column was tested up to flexural failure only without the influence of the axial force and 

its dimensions was 150×150×2230 mm. The column was constructed with seismically 

reinforcement details, which consist of Ø11.3 mm longitudinal reinforcement for each concrete 

column and ties reinforcement Ø6.3 mm spaced at 37.5mm center to center. Fig. 2 describes 

the details of reinforcing steel, and Table 1 shows its mechanical properties. Concrete cover 

from the outer edge of the ties was 10mm and the concrete compressive strength was 44MPa. 

The support conditions for these columns was simply supported. The amount of blast loads 

carried through the loading device (i.e. shock tube) on this column was 35kPa at duration of the 

positive phase 20ms, and its reflected impulse equals to 345.2 kPa.ms. 

Table 1. Mechanical Properties of Reinforcement. 

Ø6.3mm smooth steel 10M (Ø11.3mm rebar) Properties of Reinforcement 

521 572 Yield stress, fy (MPa) 

0.0045 0.0025 Yield strain,s 

578 748 Ultimate stress, fu(MPa) 

0.0405 0.0771 Ultimate strain,u 
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Fig. 2. Column dimensions and reinforcement detailing for Kadhom column. 

In the current case study, the values of MPs according to ASCE 41-13 will be a=0.035, b=0.06 

and c=0.2. ASCE 41-13 specifies flexural rigidity for columns with compression caused by 

design gravity loads ≤ 0.1Ag f`c corresponding to 0.3 Ec Ig.  E=concrete modulus (taken as 

57,000√f`c , psi), Ag=gross area of column cross-section, and f`c=concrete compressive 

strength. The slope of line BC, which represent the increase in strength due to hardening of 

reinforcement, shall be taken between zero and 10% of the initial slope according to ASCE 41-

13. For more accurate calculations, the slope of line BC represent the difference between 

nominal strength, which is calculated from Eq. (1), and the probable strength which represents 

that associated with strain hardening of the steel reinforcement, i.e. 1.25 fy, which is calculated 

from Eq. (2). So, the slope of line BC will be equal to 1.25. 

𝑀𝑢𝑙𝑡  =  𝐴𝑠 𝑓𝑦 (𝑑 −  𝑎/2)         1 

𝑀𝑝𝑟  =  1.25 𝐴𝑠 𝑓𝑦 (𝑑 − 𝑎/2)        2 

𝑎 =
𝐴𝑠 𝑓𝑦

0.85𝑏 𝑓𝑐
           3 

Where: Mult. = nominal moment, Mpr: probable moment, As = total area of tension reinforcement 

within the beam, fy = yield strength of reinforcement, which should be taken as Fdy for blast 

loads, d = distance from extreme compression fiber to centroid of tension reinforcement, a = 

depth of equivalent rectangular stress block, b = width of the column and f'c = compressive 

strength of concrete, which should be taken as f'dc for blast loads. Rotation at point (B) is 
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calculated from Eq. (4) (Elwood J. et. al., 2007). The MPs, ultimate strength and slope of line 

BC are defined as shown Fig. 3, and entered as the user defined plastic hinge in ETABS as 

shown in Fig. 4, and then the nonlinear dynamic analysis is performed. 

𝜃 =
𝑀𝑢𝑙𝑡.𝐿

3𝐸𝐼𝑒𝑓𝑓.
           4 

 

 

 

 

 

 

 

Fig. 3. ASCE 41-13 plastic hinge model of Kadhom's column. 

 

 

 

 

 

 

 

Fig. 4. Application of ASCE 41-13 Plastic Hinge Model for Kadhom's column by ETABS 

program. 

Fig. 5 represents the comparison of displacement at the column mid-height between 

experimental and analytical results using ASCE 41-13 plastic hinge model. As shown in this 

figure, the column fails at low displacement value and do not represent the actual response of 

the experimental test. Fig. 6 shows the behavior of ASCE 41-13 plastic hinge, where it can be 

seen clearly that all the plastic hinge capacity will be exhausted within short time (i.e. 13 msec.), 

which is different from the experimental results (i.e. 48 msec.).  
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Fig. 5. Displacement time history for Kadhom's column by ASCE 41-13 plastic hinge model. 

 

 

 

 

 

 

 

 

 

Fig. 6. ASCE 41-13 plastic hinge behavior for Kadhom's column. 

3. PROPOSED PLASTIC HINGE MODEL 

In order to produce an accurate and comprehensive plastic hinge model for the nonlinear 

dynamic analysis, understanding of important phenomena in the behavior of both materials 

concrete and reinforcement is required. The proposed model considers the following essential 

phenomena: concrete cover crushing, concrete core crushing, bar buckling in compression 

reinforcement, strain hardening in tensile reinforcement and softening in reinforcement bar. 

The models of concrete and reinforcement in tension and compression will be discussed in the 

coming sections. 
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3.1. Material Models and Material Properties     

To establish the moment-rotation model of a concrete section, this requires calculating section 

properties based on material constitutive relations of concrete and steel, strain compatibility, 

and equilibrium (Shayanfar J., and H.A. Bengar, 2017). Thus, in the present section, the 

properties of materials which represent all the pre-and post-yield behavior are described. 

i) Stress-Strain Model for Concrete 

The modified Kent and Park model will be adopted in the present study. This model proposed 

by (Park et. al.1982) and was a modified method of the Kent and Park model published in 1971. 

Fig. 7 shows the modified Kent and Park model (Sharma A. et al., 2012).    

 

 

 

 

 

 

Fig. 7. Modified Kent and Park model for confined concrete (Sharma A. et al., 2012). 

The model contained three parts of behavior, which can be defined in the following equations.  

For region AB, c ≤ 0.002K 

𝑓𝑐 = 𝑘 𝑓`𝑐 ⌊
2 𝜀𝑐

0.002𝑘
− (

𝜀𝑐

0.002𝑘
)

2

⌋        5 

For region BC, 0.02k < c < 20m,c 

𝑓𝑐 = 𝑘 𝑓`𝑐[1 − 𝑍𝑚(𝜀𝑐 − 0.002𝑘)]  ≥ 0.2𝑘 𝑓`𝑐       6 

Where: 

𝑧𝑚 =
0.5

3+0.29 𝑓`𝑐

145 𝑓`𝑐−1000
+0.75𝜌𝑠 √

𝑏``

𝑠ℎ
−0.002𝐾

        7 

For region CD, 

𝑓𝑐 = 0.2 𝐾 𝑓`𝑐          8 

Where: 

𝑘 = 1 +
𝜌𝑠  𝑓𝑦ℎ

𝑓`𝑐
           9 

𝜌𝑠 =
2(𝑏``+𝑑``)𝐴𝑠

𝑏`` 𝑑``𝑠ℎ
           10 
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fyh: yield strength of steel hoops, f`c: concrete cylinder strength in MPa, As: cross sectional area 

of the stirrup reinforcement, s: the ratio of the volume of transverse reinforcement to volume 

of concrete core measured to outside of hoops, i.e, b``: width of confined core measured to 

outside of hoops, d``: depth of confined core measured to outside of hoops, Sh: spacing of hoops. 

 

ii) Stress-Strain Model for Reinforcement 

a) Reinforcement in Tension 

The general form of strain-strain curve relationship for steel reinforcement in tension is 

represented by four regions: (1) linear elastic, (2) yield plateau, (3) strain hardening, and (4) 

post-ultimate stress region (Yu., W.,2006), as shown in Fig. 8. 

 

 

 

 

 

 

Fig. 8. General stress-strain curve for reinforcement. 

Linear elastic region 

The assumed stress-strain relation in this region is: 

𝑓𝑠  =  𝐸𝑠 𝜀𝑠            11 

Yield plateau region 

The idealized stress-strain relationship in this region is: 

𝑓𝑠 =  𝑓𝑦            12 

𝜀𝑦 =
𝑓𝑦

𝐸𝑠
            13 

Strain hardening region 

The strain hardening zone ranges from the ideal coordinates that strain hardening begins, (εsh, 

fy), to the ultimate coordinates, (εu, fu) that correspond to the point that resists the maximum 

load and starting of the bar necking (Yu., W., 2006). The idealized stress-strain relationship in 

this region is represented by Eq. (14). 
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𝑓𝑠 = 𝑓𝑦 + 𝐸𝑠ℎ(𝜀𝑠 − 𝜀𝑠ℎ)         14 

Where: s: steel strain, y: yield strain, u: ultimate steel strain, fs: steel stress, fu: stress at the 

ultimate strain, Es: modulus of elasticity of steel, and Esh: strain hardening slope equal to 
𝑓𝑢−𝑓𝑦

𝜀𝑢−𝜀𝑠ℎ
. 

b) Reinforcement in Compression 

The stress-strain relationship of reinforcing steel in compression is the same as that in tension 

only, if the reinforcement was prevented from buckling (Dodd, L.L., and Restrepo-Posada, J.I, 

1995). The modified Ohi and Akiyama model for bar buckling will be adopted in the present 

study (Kato et al., 1973). For monotonic loading, the buckling is assumed to begin at a critical 

buckling strain, εlb, indicated by point A as shown in Fig. 9. Post-buckling softening occurs by 

assuming, firstly, the stress decrease by τlbEs until the strain reaches ps. After that, the slope 

decreases by -0.005Es as shown Fig. 9. The term τlbEs is calculated from Eq. (16). The value of 

ps is equal to Ib+0.01. (Nakatsuka et al., 1999) relationship will be adopted to calculate the 

strain buckling lb as shown in Eq. (15).    

The relationship considers the effect of the following parameters: lateral reinforcement spacing 

to confined core diameter ratios; confining stress; yield strength of lateral reinforcement, fyh; 

the shape of reinforcement (circular, rectangular); and the compressive strength of plain 

concrete. The bar buckling initially resisted by the lateral restraint provided by the concrete 

cover as well as the transverse reinforcement (Bai Z.Z. and Au, F., 2011). 

Fig. 9. Buckling model for monotonic behavior of compressive reinforcement. 

𝜀𝑏𝑢=𝜀𝑐𝑜
+ 𝑓1𝑓2𝑓3𝑓4𝑓5           15 

Where, 𝑓1 = [
3.6 − 4.8 (

𝑠

𝑑
)                                                       0.1 ≤ 𝑠/𝑑 ≤ 0.75

0                                                                                          𝑠/𝑑 > 0.75
 

𝑓2 = (𝜌𝑠 𝑓𝑦ℎ)2 
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f3 = 1.0 for bar in circular column; 0.9 for corner bar; 0.18 for intermediate bar 

𝑓4 = [

110

𝑓𝑐
− 1                                  𝑓𝑜𝑟            30𝑀𝑃𝑎 ≤ 𝑓𝑐 ≤ 110𝑀𝑃𝑎

0                                            𝑓𝑜𝑟                              𝑓𝑐 ≥ 400𝑀𝑃𝑎

 

𝑓5 = [
600

𝑓𝑦ℎ
+ 0.5] × 10−4                                                        𝑓𝑦ℎ ≥ 400𝑀𝑃𝑎 

where, d = smallest side length of the concrete cross section surrounded by lateral 

reinforcements, f`c= cylinder concrete strength, εc0 = maximum strain of plain concrete and s 

= reinforcement ratio of transverse reinforcement to concrete core. 

𝜏𝐼𝑏 = 100 𝜀𝑠𝑦  [
1

√1+0.005𝜆2
− 1]        16 

where, εsy = yield strain of longitudinal steel, λ =αs/ ir , α = 1.0 for corner bars; 0.5 for 

intermediate bars and ir = radius of gyration for bar. 

3.2. Analytical Approach for Moment Rotation Behavior   

The moment-rotation behavior represents the plastic hinge model for flexural action in 

Reinforced Concrete RC components under the effect of blast loads. In the previous studies, 

the moment-rotation was conducted until concrete core crushing (i.e. loss of the compression 

strength). The existence of the compression reinforcement in the section may increase the 

deflection until the bar buckling or rupture in tensile reinforcement occurs. Therefore, in the 

present study, the compression reinforcement role will be considered in the moment-rotation 

behavior in both pre- and post-concrete core crushing stages.  

The proposed analytical approach is capable of predicting the concrete cover crushing, concrete 

core crushing, bar buckling in compression reinforcement, strain hardening in tensile 

reinforcement and softening in reinforcement bar (post-yield behavior), which produce the 

additional mechanism to dissipate the energy of components. 

 Pre-crushing of concrete core stage 

In this stage, the plastic rotation until concrete core crushing is taken into account.  It is known 

that the RC columns consist of unconfined cover concrete and confined concrete core. Under 

blast load effects, the concrete cover crushing occurs at the earlier stages, due to high rate in 

strain. Thus, the plastic behavior of the proposed model starts when the concrete cover reaches 

its ultimate strength (i.e. ultimate strain 0.003). So, the strength of concrete cover will be 

neglected and the symbols k and kd refer to the depth and neutral axis depth of confined 
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concrete core, respectively. Fig. 10 shows the strain diagram during the stage of pre-crushing 

of concrete core. The analytical approach is summarized in the following steps: 

 

 

 

 

 

Fig. 10. Strain diagram in pre-stage of crushing core concrete. 

1- Assume strain at the concrete cover cm-cover reaches the ultimate value 0.003.  

2- Assume a value of neutral axis depth kd, starting from kd ≥0.5d.  

3- Find the strain at extreme fiber of confined concrete cm-core by interpolation. 

4- Determine the parameters of compressive stress block of concrete  and  in region BC in 

the modified Kent and Park model which is shown in Fig. 7. Eqs. (17) and (18) are dependent 

on the values of cm-core and kd.  

𝛼 =
1

𝜀𝑐𝑚
[

0.004𝑘

3
+ (𝜀𝑐𝑚 − 0.002𝑘) −

𝑧𝑚

2
(𝜀𝑐𝑚 − 0.002𝑘)2]     17 

𝛾 = 1 −
1

𝜀𝑐𝑚
[

[{
𝜀𝑐𝑚

2

2
−

(0.002𝑘)2

12
}−𝑧𝑚{

𝜀𝑐𝑚
3

3
−0.001𝑘𝜀𝑐𝑚

2+
(0.002𝑘)3

6
}]

[{𝜀𝑐𝑚−
0.002𝑘

3
}−𝑧𝑚{

𝜀𝑐𝑚
2

2
−0.002𝑘𝜀𝑐𝑚+

(0.002𝑘)2

1
}]

]     18 

Where k and Zm were described in section 3.1.1. 

5- Determine the total compressive force in concrete Cconc. from the Eq. (19).          

Cconc = f`dc b kd          19 

Where f`dc: dynamic strength of concrete, b: width of cross section, and kd: depth of neutral 

axis of concrete core. 

6- Find strain of steel si at different levels of section
 
by interpolation depending on kd and 

cm-

core 
values and calculate the corresponding stress in steel bars fsi using the stress-strain curve 

which discussed in section 3.1.2 part I. 

7- Determine the tensile force in reinforcement Ts from Eq. (20). 

Ts= fds As           20 

Where fds: dynamic strength of reinforcement, and As: area of reinforcement. 
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8- Check the equilibrium between compressive and tensile forces. If they are equal go to step 

9, and if Cconc > Ts, decrease kd and return back to step 2, and if Cconc < Ts go to step 13. 

9- Calculate the moment, as follows:  

𝑀 = 𝑇𝑠 (𝐷 − 𝛾𝑘𝑑)          21 

Where 

Ts = fsi × 𝐴𝑠𝑖           22 

fs; stress in bar,  and As; area of bar 

10- Calculate the curvature value, as follows: 

𝜑𝑖 =
𝜀𝑐𝑚

𝑘𝑑
           23 

11- Find rotation value, as follows: 

𝜃𝑖 = 𝜃𝑦 + (𝜑𝑖 − 𝜑𝑦)𝑙𝑝         24 

Where: 𝜃𝑖 =
𝜑𝑦𝐿𝑒𝑓𝑓

2
          25 

𝜑𝑦 = 2.14 ×
𝜀𝑦

𝐷
     Priestley et al. model (Shayanfar and Bengar, 2017)   26 

Where;    

𝐿𝑒𝑓𝑓  = 𝐿 + 0.022𝑓𝑠 𝑑𝑏  Paulay and Priestley (Shayanfar and Bengar, 2017)         27 

Lp: plastic hinge length, and D: depth of the section. 

12- Repeat steps 1-11 by increasing the value of cm-core with a specific increment such as 0.001, 

until the tensile force exceeds the compressive force. 

At large compressive strain values, the tensile force exceeds the compressive force  and the 

concrete core crushing occurs, which means losing the section ability to resist compression. 

This phenomenon occurs earlier under blast loads due to the high strain rate of the material. At 

this stage, the compressive strength is transferred to the reinforcing steel in the compression 

zone. Hence, in the blast-resistant structural components, concrete beams with tension 

reinforcement only are not permitted. Compression reinforcement, at least equal to one-half the 

required tension reinforcement, must be provided (Ho et al., 2005).  

Post-crushing of concrete core stage 

The following additional steps will describe the post-crushing stage of concrete as seen in Fig. 

11.  

13- Determine the buckling strain of compression reinforcement from Eq. (15), which was 

referred to in section 3.1.2, part II.  
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14- If the strain of steel, which will be referred by 
s-h

  in this stage, is smaller to the buckling 

strain 
bu

, then, the stress of steel increased duo to the hardening corresponding to the stress-

strain curve for reinforcement. Otherwise the stress of steel decrease by τlbEs until the strain of 

steel reaches ps. After that, the slope decreases by 0.005Es. The values of ps, τlbEs, and bu 

were discussed in section 3.1.2, part II. 

15- Find moment from Eq. (28): (UFC3-340-02, 2008) 

M = As × 𝑓𝑑𝑠 × 𝑑          28 

Where M is the moment at the post-crushing of concrete core stage, As is the total area of 

tension reinforcement within the beam, fds is the dynamic design stress of reinforcement, and d 

is the distance between the compression and tension reinforcement. 

Fig. 11. Strain diagram in post-stage of crushing core concrete. 

16- Calculate the curvature Ø
s-h  

 from Equation (29) 

 𝜑𝑠−ℎ =
𝜀𝑠−ℎ

(𝑑−𝑑`)/2
          29 

Where s-h: hardening strain reinforcement. 

17- Calculate the rotation in this stage ϴ
hard..

 from Eq. (30). 

𝜃ℎ𝑎𝑟𝑑 . = (𝜑𝑠−ℎ − 𝜑𝑢)𝑙ℎ         30 

Where Øs-h: curvature of reinforcement in post-crushing of concrete core stage, Øu: ultimate 

curvature at which concrete core crushing occur, and Lh: hardening hinge length. A part of the 

plastic hinge zone is assumed as the region over which the longitudinal reinforcement 

hardening, which is called Lh as shown in Fig. 12. Hardening hinge length will be assumed to 

be equal to H/2, which its validity will be checked later. 

Where H is the depth of section. 

18- Calculate total rotation ϴ
s-h

 from Eq. (31) 
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𝜃𝑠−ℎ = 𝜃ℎ𝑎𝑟𝑑. + 𝜃𝑢𝑙𝑡.          31 

Where ϴs-h: ultimate rotation in post-crushing of concrete core stage. 

Fig. 12. Curvature diagram in pre-and post-concrete crushing stages. 

19- Repeat steps 14-18 by increasing the value of 
s-h

 with a specific increment such as 0.001 

until reaches the dynamic ultimate stress of reinforcement fdu. 

3.3. Validation of the Proposed Analytical Approach  

The proposed analytical approach was validation with the experimental program of Kadhom 

B., 2016. Fig. 13 displays the complete moment-rotation relationship conducted using the 

analytical approach mentioned in section 2.2. The figure covers all strains, starting with the 

strain of concrete cover crushing until the ultimate strain of steel, using element geometry and 

reinforcement details of Kadhom's column.  

 

 

 

 

 

 

 

Fig. 13. Moment rotation curve for Kadhom's column. 

The moment-rotation behavior is described by a series of points A, B, B`, C and D. Point (A) 

refers to the origin or unloading state, and point (B) refers to the crushing of concrete cover, 

which occurs at the ultimate strain of extreme fiber of concrete. Strain in this point equals to 

0.003 according to ACI 318-14. The flexural strength and plastic rotation using the mentioned 
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procedure are found. Point (B`) refers to the concrete core crushing, which occurs when the 

tensile force exceeds the compressive force and concrete loses its strength. The compression 

strength in this stage transferred to compression reinforcement. At the same time, the strain 

hardening begins and the strength will be increased with the increase in deflection. Point (C) 

refers to the end of the reinforcement hardening due to the absence of buckling in compression 

reinforcement in this element. As mentioned earlier the compression reinforcement behaves 

similarly to tension reinforcement in the absence of bar buckling. At the end of the hardening, 

sudden strength loss occurs and the curve reaches point (D).   

The moment-rotation behavior will be approximated to find a plastic hinge model that can 

capture the important plastic response phenomena, as shown in Fig. 14. The modeling 

parameters a and b of this model are similar and equal to 0.15 rad. The slope of line BC can be 

determined by dividing the ultimate strength at point (C) by the strength at point (B), which in 

this model equals to 1.3. The proposed model was used in ETABS as user-defined plastic hinge 

as shown in Fig. 15, and then nonlinear dynamic analysis is performed. 

 

 

 

 

 

 

Fig. 14. Proposed plastic hinge model for Kadhom's column. 

 

         

 

 

 

 

Fig. 15. Application of the proposed model by ETABS program. 
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Fig. 16 presents the comparison of displacement-time history of experimental and proposed 

model for Kadhom's columns. The results indicate the ability of the proposed model to represent 

the real response under explosion loads. Fig. 17 demonstrates the behavior of the proposed 

plastic hinge for Kadhom's columns. The response behavior in the plastic hinge model exceeds 

the concrete cover crushing as well as the concrete core crushing but don’t reaches the failure 

of section. 

 

 

 

 

       

 

 

Fig. 16. Comparison between proposed plastic hinge model and experimental results. 

 

 

 

 

 

 

 

Fig. 17. Proposed plastic hinge behavior for Kadhom's column. 

4. CONCLUSION 

The following points are concluded from the present research: 

1. The seismic plastic hinge characteristics of ASCE 41-13 are not valid in nonlinear dynamic 

analysis of structural components applied to blast loads. 

2. An analytical approach was proposed that simulates real behavior under explosive loads. 

The proposed model considers the following essential phenomena: concrete cover crushing, 
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concrete core crushing, bar buckling in compression reinforcement, strain hardening in 

tensile reinforcement and softening in reinforcement bar. 

3. The proposed model gives the opportunity for more understanding of the real failure modes 

of concrete members under the effect of blast loads, which may lead for more reliable 

strengthening and repair in such cases.  
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