Histology of ovine placenta during gestation periods

A.F.Majeed* M.S.Shalal*
T.R.Mohammed**

*College of Veterinary Medicine, Al-Anbar University
**College of Agriculture, Al-Anbar University

Abstract:

Placettes were collected from 93 pregnant slaughtered Ewes at different gestation periods, from AL.Falluja slaughter house during the periods from 2, July 2009 to 30, December 2010. Tissue specimens for microscopic examination were taken from the centers of the sampled placettes. Immediately following collection, the samples were fixed in 10% buffered neutral formalin for 24 h. Tissue specimens were dehydrated in a graded series of alcohol, cleared by xylol and embed in paraffin. Histologic section were cut at 3-4 μm thickness, Stained with hematoxylin and eosin (H&E) (6). The period of gestation were measured according to Richardson (7) with aquation of x =2.1(Y+17) as x= gestation period in day and Y=the crown Rump.

Histologic examination during early pregnancy (30 – 40 d) showed a pronounced BNC with anumber of nuclei with in each cellular boundary in the uterine epithelium indicates that possible fusions are restricted, It is also there is an increase in blood vascularity. At 40 – 50 d of pregnancy, there was a further increase in caruncular vascularity by 2-fold characterized by increase capillary number and 2 to 3 – fold increase in capillary diameter. Endometrial gland hyperplasia showed during this period. Then placettes showed grow in number and size until 80th day. It was shown that the BNCS of the trophoblast increase in size, in polarity and in the number of their cytoplasmic granules as pregnancy advanced.

التغيرات النسيجية لمشيمة الأغنام أثناء فترة الحمل

مهدي صالح شلال*
ثائر رشٌد محمد**
كلية الطب البيطري, جامعة الأنبار
كلية الزراعة, جامعة الأنبار

الخلاصة:

تم جمع المشيمات من 93 نعجة حامل خلال مراحل مختلفة من الحمل، من مجزرة الفلوجة لمدة الفترة من 2 تموز 2009 إلى 30 كانون أول 2010. أعطى نماذج للفحص المجهرى من مركز المشام. وبعد الجمع مباشرة النماذج في 10% محلول دارئي الفوريالين المتعادل لمدة 24 ساعة. مرت 163
Introduction:

Ovine placenta is cotyledonary in structure and epithliochorial histological type (1). The sheep is unusual in that the syncytium is formed by fully differentiated binucleate cells (BNC) whose granules contain a range of secretory products (2, 3). The placentomes facilitate a variety of metabolic exchanges between the fetal and maternal blood streams in acting as the organ of fetal respiration, nutrition and excretion, but it also impedes the transplacental movement of such diverse molecular species as the fat-soluble vitamins and some of the maternal hormones (4). In the ovine placenta these diverse functions are carried out by two types of trophoblastic cell, a cuboid uninucleate cell and a rounded BNC. As we shall demonstrate, both these cells undergo considerable structural modification during gestation (5). The aim of the study was undertaken to show the histological changes of ovine placentomes during different gestation periods.

Materials and Methods:

Placentomes were collected from 93 pregnant slaughtered Ewes at different gestation periods, from AL.Falluja slaughter house during the periods from 2, July 2009 to 30, December 2010. Tissue specimens for microscopic examination were taken from the centers of the sampled placentomes. Immediately following collection, the samples were fixed in 10% buffered neutral formalin for 24 h. Tissue specimens were dehydrated in a graded series of alcohol, cleared by xylol and embedded in paraffin. Histologic section were cut at 3-4 µm thickness, Stained with hematoxylin and eosin (H&E) (6). The period of gestation were measured according to Richardson (7) with equation of $x = 2.1(Y+17)$ as $x =$ gestation period in day and $Y =$ the crown Rump.

Results and discussions:

Histologic section of placentomes taken from Pregnant-genitalia at the gestation periods from 30-40 d showed a definitive synepitheliochorial placental structure, with pronounced BNC with a number of nuclei within each cellular boundary in the uterine epithelium indicates
that possible fusions are restricted, it is also there is an increase in blood vascularity The ovine trophoblast is a cuboidal epithelium containing large BNCs resting on a well-defined basement membrane and interdigitating with maternal syncytium (Fig 1,2). Similar observations have been made by several workers (4,5,8,).

Fig :1 There was a cuboidal epithelium containing large BNCs resting on a well-defined basement membrane and interdigitating with maternal syncytium

Fig:2 There was a cuboidal epithelium containing large BNCs resting on a well-defined basement membrane and interdigitating with maternal syncytium (Large magnification).

From 40 day to 50 d of pregnancy, there was a further increase in caruncular vascularity by 2-fold characterized by increase in capillary number and 2 to 3 –fold increases in capillary diameter (Fig 3,4). Endometrial gland hyperplasia showed during this period, furthermore, migration and fusion of binucleate cell with maternal
endometrial epithelial cells similar observations have been made by several authors(4,5,9,10).

The placentomes formed grow in number and size until the 80th day, it have shown that the ovine placentomes consist of chorionic villi fitting into maternal crypts separated from each other by septa. The chorionic villi consist of vascular mesenchymal cores provided with cuboidal trophoblastic cells and binucleate giant cells (Fig 5,6). Similar observations have been made by other workers (9,10). In advanced placentomes (Fig 7,8,9,10,11,12,13,14,15,16); The consistent changes in the maternal side were vascular changes (Oedema, hyperemia and hemorrhages, hemosiderin pigmentation and thickening of blood and lymph vessels in the connective tissue villi. was also seen . In the fetal side there were hyperplasia of the fetal villi and the presence of moderate to large numbers of binucleate cells. There was also a moderate infiltration of neutrophils in the connective tissue of the maternal side of the placentomes . Similar observation have been shown by several workers(4, 8, 10, 11,).

It was shown that the binucleate cells of the placenta (trophoblast) increase in size, in polarity and in the number of their cytoplasmic granules as pregnancy advances (12).

Fig:3
On 40 day to 50 d of pregnancy, there was a further increase in caruncular vascularity by 2-fold characterized By increase in capillary number and 2 to 3-fold increases in capillary diameter
Fig:4
On 40 day to 50 d of pregnancy, there was a further increase in caruncular vascularity by 2-fold characterized by increase in capillary number and 2 to 3-fold increases in capillary diameter (Large magnification)

![Image of caruncular vascularity](image1.jpg)

Fig:5
The chorionic villi consist of vascular mesenchymal cores provided with cuboidal trophoblastic cells and binucleate giant cells

![Image of chorionic villi](image2.jpg)
Fig: 6
The chorionic villi consist of vascular mesenchymal cores provided with cuboidal trophoblastic cells and binucleate giant cells (Large magnification)

Fig: 7
The vascular changes in maternal side were Oedema, hyperemia and hemorrhages, hemosiderin pigmentation and thickening of blood and lymph vessels in the connective tissue
Fig:8 Vascular changes with cellular infiltration

Fig:9 epithelial hyperplasia

Fig:10 endometrial gland hyperplasia with vascular changes
Fig: 1 capillary dilatation

Fig: 2 dilatation of capillary in the syncytium

Fig: 3 fetal side hyperemia with mononuclear cell infiltration.
Fig: 14: Dilatation of the endometrial gland with hyperplasia with BNC infiltration.

Fig: 15: Fetal side with vascular changes with few BNCs.

Fig: 16: BNCs infiltration in advance pregnancy.

References:

