
Ahmed M. S. Al-Shdidi Muna M. Asmael Rafid S.A. Al-Zubaidy

1&2 : College of Veterinary Medicine / Diyala University
3 : Faculty of Vet. Med., Ferdowsi University of Mashhad, (Iran).

E.mail : rafidsamir@yahoo.com

Abstract
The study conducted to indicate the experimentally comparative measurements of Campylobacter spp. Load with food poisoning and to investigate the effect of different types and concentrations of Emulsifying salts : (Sodium Carbonate Na2CO3, triSodium Citrate Na3C6H5O7, Sodium tripolyphosphate (STPP) Na5P3O10), to choose the best mix of them that reduce the microbial load in locally produce cheese. 60 samples of Cheese locally produced from milk of Awassi ewes were been collected randomly from Local Awassi Flock of College of Agriculture at Baghdad University (Iraq), (30 samples to each winter and spring season) to investigate their microbial load. Both of all winter and spring samples were in significant (p<0.05) microbial count of Campylobacter spp. The Bacterio-(static&cidal) effect of Emulsifying salts on microbial activity was confirmed when The Total Bacterial Count (TBC) were highly significant (p<0.01) reduce in cooked cheese with 3% Emulsifying salts added. The Campylobacter spp. count in nutrient broth with 3% Emulsifying salts added were significant (p<0.05) reduce.

Key Words :- Campylobacter Spp. , Emulsifying salts , Cheese , Awassi ewes

دراسة لتلوث الجبن المصنوع من لبن نعاج العواسي المحلي بجرثومة العطيفة وتأثيرها في الصحة العامة

أ.م.د. أحمد محمد صالح الشديدي

A. M. D. منى محمد إسماعيل

Rafid S. A. Abdul-Karim

1 & 2: كلية الطب البيطري / جامعة ديالى

3: كلية الطب البيطري / جامعة فردوسى مشهد (إيران)

الخلاصة :-

استهدفت الدراسة دراسة درجة تلوث عينات من الجبن المصنوع من اللبن المنتج محليا في بغداد (العراق) من نعاج العواسي بأعداد جراثيم العطيفة المرتبطة بالعداء إجراء تقييم العينة، بدءًا بجراثيم العطيفة الملوثة للعينة المصنوعة من لبن-local一種-3، وتأثيرها على حمولتها الجرثومية المؤثرة في الصحة العامة ودراسة تأثير استخدام أنواع تراكيز مختلفة من أملاح الاستحلاب في عملية الطبخ حيث جمعت بصورة عشوائية 60 عينة من الجبن المصنوع محليا من ألبان نعاج قطيع أغنام العواسي التي تميزت بالارتفاع المعنوي (p<0.05) في كل عينة مع متوسط عدد الجراثومي الكلي.
Introduction:

Zoonotic diseases are widely spreading among humans and animals in countries around the world and animal products is important in the transmission of these diseases to humans. The suggest local estimates of the national survey of livestock for the year 2008 by the Central Statistical Org. (CSO) and Ministry of Agriculture, Iraq [1] that the number of sheep in 2008 amounted to (7,722,375) constitute 63.86% of the number of total animals in diameter ratio, and Awassi breed constitute 60-65% of the total sheep local breeds [2], where there is widespread in some northern areas of the central region of the country and one of the most local breeds of sheep number in Iraq . The cheese factory in sheep breeders houses from the raw milk of ewes big role in the transfer of many of the pathogens to humans because of the high content of bacteria resulting from the non-use of thermal treatment or these transactions are insufficient to eliminate pathogenic bacteria in milk intended for the manufacture, or as a result of the pollution due to primitive methods used during production, transportation and trading. On this basis and because of the lack of such a cheese with health conditions, the incorrect thermal treatment and determine the quality of Emulsifying salts typically and appropriate proportions of emulsification cheese factory locally will lead to the elimination of this bacteria that resides in it and work on the reduction of germ payload that have a significant role in determining the quality and lengthen the period of validity for human consumption [3;4;5;6]. focusing on the role of the contamination of milk products in general and cheese produced locally in particular, in the process of epidemiological Campylobacter spp. And its relationship to Public Health and for the purpose of the consumer to know the true size of the problem locally, this study was carried out by following techniques to isolate and diagnose from the local milk products over the winter and spring season.

Campylobacteriosis food poisoning is the most common cause of gastro-enteritis in the US, UK and around the world, especially in the developed and developing countries. It is a diverse transition to humans, but documented as the most commonly by eating poultry raw or non-cooked meat, in milk, on poultry meat, in un-Pasteurized milk, by domestic and wild animals infection, from the farm animals and water sources. Campylobacter jejuni have been identified as the main cause of human gastro-enteritis associated with food poisoning, but C.coli and other species and their sub-types can also be responsible gastro-enteritis [7]. Along with the risk to humans from gastro-enteritis can result in from C.jejuni, a (Guillain-Barré syndrome) [7] or acute idiopathic demyelinating polyneuropathy (AIDP), a rare condition, but seriously affects one person out of 100,000 people provoked occurrence prior C.jejuni infection among 30% of patients with this condition [8;9]. Nearly 845 thousand Campylobacter cases annually in the US happen or approximately 28% of the recorded outbreaks of food-borne illness which reported more than 6 thousands case of infection in 2009, only without a death [10;11], recorded of several cases of outbreaks of Campylobacter milk-borne infection in the US since the beginning of the 70s of the last century, equivalent to 25% of all registered cases of morbidity of milk-borne infections [12;13]. Such cases as a result of raw milk contaminated
C. jejuni by infected people and lack of cooling the milk for several hours, and in 1981 scored outbreaks of C. jejuni due to consumption of insufficient pasteurized milk [13]. Recorded in the former SU outbreaks of Campylobacter associated with dairy products affected by the use of C. jejuni contaminated water in milk manufacturing processes [14]. Ensure Campylobacter infection in other dairy products such as yogurt and white cheese in England in 1981, signed for outbreaks caused by C. jejuni contaminated cheeses [15]. Campylobacterosis is a Zoonotic disease transmitted to humans by animals or animal products, causing Diarrhea more than salmonella, so that the number of cases of the disease reported in some countries outweigh the number of cases of salmonella disease, Its believed to be about 5-14% of all cases diarrhea in the world caused by the Campylobacter, and its frequent cause of travelers diarrhea [10;11], the longer, Campylobacter infection is the main problem for developing countries [16] because of the lack hygiene habits, contaminated water and food with infected fecal matter the main source of infection, the contaminated vegetables with infected feces and sewage, and can to convey houseflies and red cockroaches that are stockiest and transmission of the Campylobacter on their wings and legs after standing on a infected stool [17]. At least willing young adults under the age of 15-29 years of infection, followers of the personal hygiene habits of less in children, the incidence in males is higher than in females [18] Campylobacter cause of 49% of cases of food-borne illness and there is a high in the incidence rates and mortality rates among children under five years old, who make up 30% of the total infected. (Despite the incapability of children under the age of 6 months to be infected with dysentery) [19]. At the global level, talked about 220 million cases a year caused by the occurrence of 2.2 million deaths [18;20]. In endemic countries the Campylobacter infection is responsible for about 28% of all cases of diarrhea among children and more than 90% of deaths resulting from diarrhea [20]. The most important characteristic of the Campylobacter contaminated food is not to get any change in the taste and color and the smell of food, making it difficult to distinguish and caution him, although the increasing incidence of Campylobacter patterns of resistance to antibiotics of life made it difficult to control the treatment of infection [21;22;23].

- The general characteristics of Campylobacter bacteria :-

Theodor Escherich [24] a German-Austrian pediatrician in 1886 describe the transmission of Campylobacter in the form with parasitic infections in infants or summer of cholera disease which have been classified in a new genus for the first time in 1963 by Sebald&Veron [25] and were not isolated until 1972 [26]. In 1909 Notice researchers McFadyean&Stockman of unfamiliar bacterial shapes repeated presence in abortions disease endemic Epizootic in ewes have books in 1913 [27] the report made it clear that the existence of a relationship between the bacterium and cases of Infectious abortion in cattle and sheep, the first reference to the Campylobacter bacteria. And in the 50s of the last century [28] History of the disease such as hepatitis infectious infects poultry [30;29]. Vinzent,et.al.1947 [31] scored the first case of Campylobacter human infection in pregnant women miscarried before the date of her birth after 5 weeks of illness. Campylobacter is a genus back to the Campylobacteraceae family, a Gram-negative bacteria, helical in shape, non spore-forming, mobile, uni- or bi-flagellated polar, Anaerobic or microphilic, not grow in the presence of O2 more than 5%, thermo-philic grow at 42C (except C.fetus grow in 25C), Sensitive to cooling, freezing, killed by pasteurization, Sensitive to low pH below 4.5, as well as dry media and [salt] higher than 1% [33;32] (except C.fetus Iraqi strain [34]). The
Campylobacter bacterium are sensitive to acidity and low pH not bear pH=2.5 for 2h. , but the chance of bringing the infection is greater when ingested with contaminated milk and unpasteurized milk products which making it easier to survive by crossing the stomach. Most _Campylobacter_ strains infect the tissues of the jejunum, small intestine and colon, and produces a toxin cytolethal distending toxin which helps the bacteria to evade the immune system and stay in the cells for a limited period and that their disability cell division and the immune system, and it was believed in the past that its produce Cholera-Like Enterotoxin but it turned out later that it causes inflammation of the intestines respects (metastatic) bloody Odematous and exudative enteritis [36]. The large intestine (colon and rectum) is the main infection sites the fact that animated continue to stay in the small intestine and because of the movement of the ciliary cells of the intestine and rapid flow of liquids and intestinal peristaltic movement conversion intestinal growing. Establish colonies and invade mucosal epithelial cells and include pathogenicity of four phases: - invasion, intra-cellular multiplication, inter- &intracellular cells (cell-to-cell)-movement, and host cell-killing [35;36;37].

- _Campylobacter pathogenesis:_ - _C.fetus_ and _C.jejuni_ Causing _Campylobacter_ abortion and mastitis in goats and sheep, which is the treasurer naturally to _Campylobacteria_ , where up insulation ratios have to 40-100% of the feces of the animals and most serotypes isolated similar to those isolated from human feces private _C.jejuni_ and _C.coli_. _C.jejuni_ is a common Zoonotic and one of the most major causes of gastro-enteritis in humans [35]. Symptoms of _Campylobacter_ food poisoning occur in people usually after 2-5 (incubation) period of up to 10 days after eating contaminated food. The most common symptoms are diarrhea, typical symptoms include: diarrhea (which ranges between moderate and severe and often bloody), fever, nausea, vomiting, abdominal pain, headache, muscle pain. _Campylobacteriosis_ [36;37;38;39] is the infection fecal-oral main route of _Campylobacter_ infection in humans [19] where the transmission of the disease (especially in children under five years old) by contamination with infected fecal matter [18]. the germ with the infected stools in the recovery period for a period of 5 weeks and these germs highly infectious and may continue during the acute infection per gram of feces infected person may contain (10^5) bacteria , knowing that the minimum dose of infectious intake ranging between (5x10^2 - 10^5) bacteria [20;21]. Most outbreaks pathological reach its peak during the month of May and October and be individual cases in the summer [40]. In England the beginning of the month of May begins and reaches its peak in early June. This seasonal incidence may be linked to the movement of the object by flies [36]. It has been observed that there is epidemiological changes in the prevalence of serotypes quality and occurrence of dysentery, find that the serotype common in cold regions (America and Europe) is _C.fetus_ and cause the incidence of dysentery during the winter months, while _C.jejuni_ serotype is common in the tropics and cause the incidence of dysentery end of the summer, as it was noted that the epidemic dysentery be periodic cyclic lasts between each session (4-5 years), so this should be taken into account when applying vaccination programs to prevent infectious outbreaks [36;37].

- Emulsifying salts (E.salts) :-

By the experiences of researchers working in the cheese industry, a result of the search for a way to save the dry and semi-dry cheese observed the separation of cheese ingredients (water, fat and protein) from each other during cooking, which led to the search for chemical compounds have the ability to prevent separation in addition to its ability to spread protein in emulsion [3;4;41]. Habicht at 1934 used part of
E. salts known at the present time [42], which are organic compounds with mono-valent roots and positively charged and many other parity negatively charged, where its works as a dispersant of protein and thus help to dissolve as well as the emulsification of fat, but found that some of them not suitable for use in the cheese industry and for reasons that economic considerations. John E. salt found in 1936 and used in the cheese industry [43] there are about 20 species of these salts to fit all kinds of cheese industry, they vary salts in the capacity to bring about the spread of the protein and its effect on the pH of the mixture of cheese the user and its ability to resist pH changes (1% solutions) and has been divided into: acidic, alkaline and neutral E. salts, its works to stop calcium effectiveness, which affects the stability of the gel cheese, the first property of E. salt is the ability to dissolve the casein to produce a homogeneous fluid [44]. Its has the ability to influence the properties of keeping the product of the bacteriological through its (Cidal or Static) antibacterial impact [45]. The table (1) shows the percentages of the components of four Mixes of E. salts used in the experiment and the results of the change in pH.

<table>
<thead>
<tr>
<th>Table (1) Emulsifying salts %</th>
<th>Mix(1)</th>
<th>Mix(2)</th>
<th>Mix(3)</th>
<th>Mix(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Carbonate (Na₂CO₃)</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>triSodium Citrate (Na₃C₆H₅O₇)</td>
<td>5</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium tripolyphosphat (STPP) (Na₅P₃O₁₀)</td>
<td>90</td>
<td>90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>pH</td>
<td>10.23</td>
<td>10.23</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

- Materials and methods of work:
 - The Samples Preparation:
 a) The process of the local soft cheese manufacture:
 It was, according to the [3;4]: by putting the milk drained in a vase and warms to the point of 38°C and add the rennet at a rate of 2.5g/50kg milk and mix well for 5m. and cheese-forming process occur during 2-3h. and drain the clot formed with a piece of muslin cloth to get rid of whey and placed in molds refinery clot pressing weights.
 b) Processed cheese manufacturing locally:
 It was, according to the [3;4]: Using a manufacture soft cheese where the local soft cheese cut into slices and mince electric with machine and put in the cooking pot and added 2% E. salts the mixture no.(2) in table (1) above then was cooked at 85°C/30m. and then was packed in 100g. capacity containers.
 - The Micro-biological tests:
 a) Total Bacterial Count (TBC):-
 Followed the way of the Standard Plate Counting (SPC) in accordance with the [46;47] to calculate the counting of bacterial aggregate where they were taking 11g. of different parts of the cheese sample and placed in a blender added a 99mL of 2% Na citrate solution temperature of 45°C and mix on high speed for 5m. to be obtained on the sample liquid was conducted on the sample string of decimal Dilutions and used two dishes to relieve the one and the transfer of (1&0.1)ml of the diluted to each dish and was attended by counting dishes plate count agar and poured in Dilution sample dishes and incubated at a temp. 42°C/72 h. and calculated the number of colonies of bacteria formed.
 b) Isolate and diagnose the Campylobacter bacteria:
 Were in accordance with the [46;47] stages the following steps:
 1. planting phase in nutrient broth (peptone water) in a container closed containers on Gas Pack provides 5-7% O₂ or containers Candle Jar provides 15-17% O₂ to provide the Microaerophilic condition=(N₂85%, CO₂10%, O₂5%).
 2. implant on the selective media -stage (Thiole media) prepared from horse blood in a container of anticoagulant freeze and then dissolved at room temperature frequently to ensure breaking of RBCs.
3. Microscopic examination by the Dark-field way.
4. conducting confirmatory biochemical tests, a definitive diagnosis:
 (Oxidize+, Catalase+, Motility+).

c- The effect of Emulsifying salts (E.salts) on Campylobacter bacteria: -
 After the diagnosis of bacteria depending on the [32;34;47] took the loop carrier one Standard Platinum 1Loopfil colonies of pure spores were grown in nutrient broth and incubated at 37C/48h. , then was taken 1 ml of nutrient broth-grown and conducted decimal Dilution required with buffer phosphate solution and by the number of spores in each 1 ml. of the broth, then added (2 , 2.5 , 3) g. of E.salt of the mixture no. (2) in table (1) above and used in the experiment per 100 ml. of the broth-grown and then by the number of germs after the addition of E.salts.

- Results and Discussion :-
 Proven Micro-Biological results analysis that cheese samples locally produced from the milk collected at random from the herd sheep Awassi of the Faculty of Agriculture / University of Baghdad, Iraq, and at a rate of 30 samples for each of the winter season from the beginning of December to the end of January and the spring season from the beginning of March to the end April, all of these samples were of a low level of health and in terms of quality and not in conformity with local and international standards.

Table (2) Campylobacter/g isolation of cheese samples during the probationary period.

<table>
<thead>
<tr>
<th>Month</th>
<th>no. of (+) samples/total no.</th>
<th>Isolation %</th>
<th>Campylobacter TBC/g. CFU/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>7/15</td>
<td>46.6</td>
<td>$10^{4} \times 7.5$</td>
</tr>
<tr>
<td>January</td>
<td>6/15</td>
<td>40</td>
<td>$10^{4} \times 6.8$</td>
</tr>
<tr>
<td>December+January</td>
<td>13/30</td>
<td>43.33</td>
<td>$10^{5} \times 7.15$</td>
</tr>
<tr>
<td>March</td>
<td>9/15</td>
<td>60</td>
<td>$10^{3} \times 2.7$</td>
</tr>
<tr>
<td>April</td>
<td>8/15</td>
<td>53.3</td>
<td>$10^{3} \times 3.2$</td>
</tr>
<tr>
<td>March+April</td>
<td>17/30</td>
<td>56.66</td>
<td>$10^{5} \times 2.95$</td>
</tr>
<tr>
<td>Overall</td>
<td>30/60</td>
<td>50</td>
<td>$10^{5} \times 5.1$</td>
</tr>
</tbody>
</table>

The results of Table (2) the number of positive samples to the total number of samples and the proportions of the isolation and the rates of the Campylobacter total bacterial count (TBC) in cheese in winter (month12 and 1) and spring (Month 3 and 4) seasons, we find that the overall average of the rates of presence of Campylobacter bacteria CFU/g in these products ratios were 50 %.

Table (3) isolation rates and the rate of Campylobacter TBC/g

<table>
<thead>
<tr>
<th></th>
<th>no. of (+) samples/total no. winter</th>
<th>no. of (+) samples/total no. spring</th>
<th>no. of (+) samples/total no.</th>
<th>Isolation %</th>
<th>Campylobacter TBC/g. CFU / g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>13/30</td>
<td>17/30</td>
<td>30/60</td>
<td>50</td>
<td>$10^{5} \times 5.05$</td>
</tr>
</tbody>
</table>

The results of the table (3) The number of positive samples to the total number of samples and the proportions of the isolation and the rates of the Campylobacter total bacteria count (TBC) in cheese samples that have been collected, including the winter seasons and spring, and we find that the overall rate ratios of the rates of presence of Campylobacter bacteria CFU/g in these products was 50%.
Table (4) compared to the TBC of milk samples for each of the winter season and spring rates

<table>
<thead>
<tr>
<th>CFU</th>
<th>winter season</th>
<th>spring season</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBC</td>
<td>±10^7×9.5 - 10^7×1.20</td>
<td>±10^7×12.083 - 10^7×1.80</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>10^7×0.087</td>
<td>10^7×0.086</td>
<td></td>
</tr>
<tr>
<td>Campylobacter / g Counting</td>
<td>±10^7×27.5×10^7×5.1</td>
<td>±10^7×11.5×10^7×5.1</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>10^7×0.377</td>
<td>10^7×16.18</td>
<td></td>
</tr>
</tbody>
</table>

- SE = Standard error
- ** Highly significant difference (P<0.01).

The results table (4) The seasons of the year effect on the total bacterial counting (TBC) and the Campylobacter bacteria, where the statistical test results showed a highly significant difference (P<0.01) in the total bacterial counting (TBC) rates CFU / g of the season spring for the winter season and attributed this high count the reasons many of them inefficient thermal treatment and pasteurization of raw milk. And an appropriate degree air to the growth and reproduction of these germs heat and an increase subtracting the germs with the media during the spring season and misapplication of health law at the production, marketing and supply in addition to the rapid multiplication of bacteria in milk products when they become a temperature close to the optimum for their growth during the spring season, where it is under conditions of cooling and thawing repeated because of a power outage during storage in addition to survival for long periods in the retail and not consumed shortly before the citizen exposing them to these conditions and for longer periods. It also notes from the results table (4) there is a highly significant difference (P<0.01) in the Campylobacter total bacterial count rates of the CFU/g of the season spring for the winter season and attributed this rise of advanced reasons as there is a relationship between growth and reproduction of Campylobacter bacteria in the milk and temperatures various observation during the seasons of the year, fecal-oral infection considered the main route of Campylobacter infection in sheep, and be wild bird carriers of the infection [36;37], and the proliferation of domestic flies and the red cockroaches, which is the Campylobacter treasurer carrier can transmit the Campylobacter on the legs and wings yet stand on a infected stool [17].

Table (5) count rates of Campylobacter/g in samples nutrient broth affected by adding Emulsifying salts%

<table>
<thead>
<tr>
<th>Emulsifying Salt %</th>
<th>0%</th>
<th>2%</th>
<th>2.5%</th>
<th>3%</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campylobacter / g Counting</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>10^7×5.1</td>
<td>10^7×1.8</td>
<td>10^7×1.3</td>
<td>10^7×1.0</td>
<td></td>
</tr>
</tbody>
</table>

- Small different English letters within the same column indicate significant difference (P<0.05).
* Significant difference (P<0.05)

The results of the table (5) the existence of a significant difference (P<0.05) in the Campylobacter bacteria count rates before and after the addition of (2, 2.5 and 3%) of Emulsifying salts into nutrient broth and attributed this difference is due to changes in the pH of the broth nutrient to become the baseline by Emulsifying salts additives and is not valid for the growth of these bacteria. Where he was pH 7.2 and became after the addition of Emulsifying salts (9.8 and 9.85 and 9.9), respectively, resulting in a reduction of Campylobacter bacteria grow in nutrient broth samples.
Table (6) the effect of adding Mixture No. (2) of 3% on the Campylobacter TBC/g.

<table>
<thead>
<tr>
<th>Emulsifying Salt %</th>
<th>0%</th>
<th>3%</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBC</td>
<td>10²×1.2</td>
<td>10¹×6.7</td>
<td>**</td>
</tr>
<tr>
<td>Campylobacter/g</td>
<td>10²×5.1</td>
<td>10¹×8.4</td>
<td>*</td>
</tr>
</tbody>
</table>

** Highly significant difference (P<0.01).
* Significant difference (P<0.05).

The results table (6) that for some Emulsifying salts (Cidal) or (Static) antibacterial effect [45] When adding the concentration of 3% of the Emulsifying salts of the mixture (2) used in the experiment there was a decrease highly significant (P<0.01) in the Total Bacterial Count (TBC) from 1.2×10² to 6.7×10¹ CFU/g and a significant decrease (P<0.05) in Campylobacter bacterial count from 5.1×10² to 8.4×10¹ and attributed this difference as a result of bacteriostatic effect by Emulsifying salts on the Bacteria.

References
14- Solodovnikov,IP; Aleksandrovskaia,IM. (1992): Multiyear
observations of the dynamic epidemic process in sonne dysentery in a small
district of Vladimir Province. Zh Mikrobiol Epidemiol Immunobiol 9–
10:41,.
15- Sharp,JCM,(1987): Infections associated with milk and dairy products in
DOI:10.1051 /vetres: 2005012. PMID 15845230.
jejuni isolated from children in mice . MSc. Thesis (in Arabic) , College of
Veterinary Medicine .University of Baghdad . Iraq .
18-Bhunia,A.K.(2008): Food borne Microbial Pathogens Mechanisms and
Pathogenesis , 15-Campylobacter species .P.no. 253-64 Springer Science+Business
Media, LLC, 233 Spring Street, New York, NY 10013, USA.
19-Giannella, Ralph
A.(2010): “Infectious Enteritis and Proctocolitis and Bacterial Food
Poisoning.” Sleisenger and Fordtran’s Gastrointestinal and Liver
Disease. Ed. Mark Feldman, Lawrence S. Friedman, and Lawrence J. Brandt. 9th ed.
Philadelphia: Saunders Elsevier,.
Information”.
isolated from children and poultry . PhD. Dissertation (in Arabic) , College of
Veterinary Medicine .University of Baghdad . Iraq .
jejuni . PhD. Dissertation (in Arabic) , College of Veterinary Medicine
24- Theodor Escherich (1857-1911): a German-Austrian pediatrician and a professor
:History&Archives .Wikipedia , the free encyclopedia .USA.
25-Sebald,M. and Veron,M. (1963) : Teneur en Bases de IADN et classification
Pasteur 105-897-910 . Index veterinaries 32:1964-140 .
26-Veron,M. and Chatelain,R.(1973) : Taxonomic study of genus Campylobacter
, Sebald&Veron and designation of the neotype strain for the type species . C.fetus
27-McFadyean,J. and Stockman,S. (1913) : Report of the departmental
committee appointed by the Board of Agriculture and Fisheries to enquire in to
epizootic abortion . his Majesty’s stationary office , London.In:
Campylobacter infection in man and animal (ed.J.P.Butzler).Boca Raton . CRC
29-Al-Hajaj,M.A.A.(1992) : The Evaluate the Efficiency of number of media used in
isolation of Campylobacters from local birds . MSc. Thesis (in Arabic) , College of
Veterinary Medicine .University of Baghdad . Iraq .
jejuni isolated from Diarrheal cases in Chicken and Children . MSc. Thesis (in Arabic) , College of Veterinary Medicine
31-Vinzent,R.;Dumas,J. and
Picard,N.(1947) : Speticemie grave cours

