Calculations of The Shell Model for 27Mg Isotope
DOI:
https://doi.org/10.31257/2018/JKP/2023/v15.i01.11214Keywords:
Shell model, reduced transition probability, Energy Levels, Core-polarization effects, 27MgAbstract
Using shell-model calculations, the nuclear structure (energy levels and reduced transition probability) of 27Mg isotope has been studied. Shell-model codes, Oxbash for Windows operating system, were utilized to calculate the outcomes. Using a harmonic oscillator, the wave functions of radial single-particle matrix elements have been calculated. The calculated energy levels and available experimental data up to 5 MeV for 27Mg are compared. Core-polarization effects on reduced transition probability are introduced via first-order perturbation theory, which permits higher energy configurations via nucleon excitations from core orbits to those outside model space up to 9ℏω. The core-polarization effects have improved the agreement between B(E2) and their corresponding experimental data, but have no effect on B(M1), B(M2), and B(E1).
Downloads
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Mohammed Yahya Hadi, Ammar A. Al-Sa’ad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Kufa-Physics is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, to create extracts, abstracts, and new works from the Article, to alter and revise the Article, and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the JKP website, while KJP is responsible for appreciating citation for their work, which is released under CC-BY-4.0 enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.