HEAVY METAL BIOREMEDIATION BY ALGAE: A REVIEW OF REMOVAL METHODS, BY-PRODUCT RECOVERY, OBSTACLES, AND POTENTIAL FUTURE APPLICATIONS.

Authors

  • Sadiq Kadhum Lafta Alzurfi faculty of science/ kufa university /Iraq
  • Khitam Jameel Mushtaq Faculty of science - University of Kufa-Iraq

DOI:

https://doi.org/10.36320/ajb/v15.i2.12531

Keywords:

Algae, Adsorption, Bioremediation

Abstract

         Due to the constant discharge of many pollutants into the aquatic environment, water pollution is a major environmental concern on a global level. The treatment of heavy metals found in wastewater has attracted attention to novel technologies in recent years. The utilization of biological processes has been investigated because they are dependable, straightforward, and eco-friendly. Through this review, the researchers attempt to disseminate information regarding the environmental dangers posed by heavy metals, the function of bioremediators employed in heavy metal processing, the many microalgae strains utilized for heavy metal removal, and their modes of action for remediation. Different external and intracellular processes are used by diverse microalgae species to remove heavy metals. In-depth discussion is provided on the assessment of microalgae's processing potential and the usage of biochar generated from algae in the removal of heavy metals. It is obvious that bioremediation of heavy metals alone is not a viable business plan. As a result, additional work is being done to create integrated treatment plans to make this procedure more affordable and long-lasting. This review describes recent developments in the use of microalgae for heavy metal therapy. Additionally, the challenges that must be met in order to improve this process efficiency, economy, sustainability, and cleanliness are covered. From the comments in this review, it can be inferred that bioremediation can be crucial to the sustainable processing of heavy metals and the development of the bio-economy.

Downloads

Download data is not yet available.

References

Sousa, J.C.G., Ribeiro, A.R., Barbosa, M.O., Pereira, M.F.R., Silva, A.M.T., (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 344, 146–162. DOI: https://doi.org/10.1016/j.jhazmat.2017.09.058

Kim, H.T., Lee, T.G., (2017). A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr and Cd). Chemosphere 178, 479–485. DOI: https://doi.org/10.1016/j.chemosphere.2017.03.092

Zulfiqar, M., Samsudin, M., Sufian, S., (2019). Modelling and optimization of photocatalytic degradation of phenol via Tio2 nanoparticles: An insight into response surface methodology and artificial neural network. J. Photoch. Photobio., 384, 112039. DOI: https://doi.org/10.1016/j.jphotochem.2019.112039

Wollmann, F., Dietze, S., Ackermann, J., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860–871 . DOI: https://doi.org/10.1002/elsc.201900071

Peng, Q., Chen, W., Wu, L., & Bai, L. (2017). The Uptake, Accumulation, and Toxic Effects of Cadmium in Barnyardgrass (Echinochloa crus-galli). Polish Journal of Environmental Studies, 26.(3) DOI: https://doi.org/10.15244/pjoes/65780

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691

Hall, J. L.(2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp. Bot., 53:1–11. DOI: https://doi.org/10.1093/jexbot/53.366.1

SIMON, D. F.; DAVIS, T. A.; TERCIER- WAEBER, M. T.; ENGLAND, R.; WILKINSON, K. J. Insitu evaluation of cadmium biomarkers in green algae. Environ, Pollut, 2011, 159:2630-2636. DOI: https://doi.org/10.1016/j.envpol.2011.05.028

Alam, M.A., Wan, C., Zhao, X.Q., Chen, L.J., Bai, F.W., (2015). Enhanced removal of Zn2þ or Cd2þ by self flocculating microalga Chlorella vulgaris JSC7. J. Hazard. Mater. 298, 38-35. DOI: https://doi.org/10.1016/j.jhazmat.2015.02.012

Cai, X., Zheng, X., Zhang, D., Iqbal, W., Liu, C., Yang, B., Zhao, X., Lu, X., Mao, Y., (2019). Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotox. Environ. Saf. 181, 472e480. DOI: https://doi.org/10.1016/j.ecoenv.2019.06.036

Bilal, M., Rasheed, T., Sosa-Hernandez, J.E., Raza, A., Nabeel, F., Iqbal, H.M.N., (2018). Biosorption: an interplay between marine algae and potentially toxic elements a review. Mar. Drugs 16, 1e16. DOI: https://doi.org/10.3390/md16020065

Aslam, A., Thomas-Hall, S.R., Mughal, T., Zaman, Q., Ehsan, N., Javied, S., Schenk, P.M., (2019). Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations. Environ. Manag. 241, 243e250. DOI: https://doi.org/10.1016/j.jenvman.2019.03.118

Rizwan, M., Ali, S., Qayyum, M.F., Ibrahim, M., Ziaurrehman, M., Abbas, T., Ok, Y.S.,(2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Poll. Res. 23, 2230e2248. DOI: https://doi.org/10.1007/s11356-015-5697-7

Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy metals, 10, 115-132 DOI: https://doi.org/10.5772/intechopen.76082

Herawati, N., Suzuki, S., Hayashi, K., Rivai, I. F., & Koyama, H. (2000). Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bulletin of environmental contamination and toxicology, 64(1), 33-39 DOI: https://doi.org/10.1007/s001289910006

Förstner, U. (1995). Non-linear release of metals from aquatic sediments. Biogeodynamics of pollutants in soils and sediments: Risk assessment of delayed and non-linear responses, 247-307 DOI: https://doi.org/10.1007/978-3-642-79418-6_11

Bocanegra, A., Bastida, S., Benedi, J., Rodenas, S., & Sanchez-Muniz, F. J. (2009). Characteristics and nutritional and cardiovascular-health properties of seaweeds. Journal of medicinal food, 12(2), 236-258 DOI: https://doi.org/10.1089/jmf.2008.0151

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60 DOI: https://doi.org/10.2478/intox-2014-0009

Gardea-Torresdey, J. L., Rodriguez, E., Parsons, J. G., Peralta-Videa, J. R., Meitzner, G., & Cruz-Jimenez, G. (2005). Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Analytical and Bioanalytical Chemistry, 382, 347-352 DOI: https://doi.org/10.1007/s00216-004-2966-6

Gazwi, H. S. S., Yassien, E. E., and Hassan, H. M. (2020). Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol. Environ. Safe 192, 110297. doi:10.1016/j.ecoenv.2020.110297 DOI: https://doi.org/10.1016/j.ecoenv.2020.110297

Saeed, H. I., Alyas, J., Saeed, A., Majeed, T., & Anjum, I. (2021). Role of Microorganisms in Bioremediation. Pakistan Journal of Biochemistry and Biotechnology, 2(2), 140-176 DOI: https://doi.org/10.52700/pjbb.v2i2.47

Akpor OB, Ohiobor GO, Olaolu DT (2014) Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng 2(4):37–43. https://doi.org/10.11648/j.abb.20140204.11. DOI: https://doi.org/10.11648/j.abb.20140204.11

Henson, M. C., & Chedrese, P. J. (2004). Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Experimental biology and medicine, 229(5), 383-392 DOI: https://doi.org/10.1177/153537020422900506

Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian Journal of Medical Research, 128(4), 557-564.

Chowdhury, M. J., McDonald, D. G., & Wood, C. M. (2004). Gastrointestinal uptake and fate of cadmium in rainbow trout acclimated to sublethal dietary cadmium. Aquatic Toxicology, 69(2), 149-163 DOI: https://doi.org/10.1016/j.aquatox.2004.05.002

Melgar, M.J., Perez, M., Garcia, M.A., Alonso, J., Miguez, B. (1997). The toxic and accumulative effects of short‐term exposure to cadmium in rainbow trout (Oncorhynchus mykiss). Vet. Hum. Toxicol. 39: 79–83.

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782 DOI: https://doi.org/10.3390/ijerph17113782

Mudgal, V., Madaan, N., Mudgal, A., Singh, R. B., & Mishra, S. (2010). Effect of toxic metals on human health. The open Nutraceuticals journal, 3(1) DOI: https://doi.org/10.2174/18763960010030100094

Mutlu, A., Lee, B.K., Park, G.H., Yu, B.G. and Lee, C.H. (2012). Long-term Concentrations of Airborne Cadmium in Metropolitan Cities in Korea and Potential Health Risks. Atmos. Environ. 47: 164–173. DOI: https://doi.org/10.1016/j.atmosenv.2011.11.019

Howard, J. A., Kuznietsova, H., Dziubenko, N., Aigle, A., Natuzzi, M., Thomas, E., ... & Tillement, O. (2023). Combating lead and cadmium exposure with an orally administered chitosan-based chelating polymer. Scientific Reports, 13(1), 2215 DOI: https://doi.org/10.1038/s41598-023-28968-4

Ellingsen, D. G., Horn, N., & Aaseth, J. (2007). Handbook on the Toxicology of Metals. Third Edition. Academic Press is an imprint of Elsevier.943pp

Goyer, R. A. (1986). Toxic effects of metals. Pages 582-635 in C. D. Klaassen, M. O. Amdur, and J. Doull (eds.). Casarett and Doull's toxicology. Third edition. Macmillan Publ., New York.

Kerger, B. D., Paustenbach, D. J., Corbett, G. E., & Finley, B. L. (1996). Absorption and elimination of trivalent and hexavalent chromium in humans following ingestion of a bolus dose in drinking water. Toxicology and applied pharmacology, 141(1), 145-158 DOI: https://doi.org/10.1016/S0041-008X(96)80020-2

Papp, J. F., & Lipin, B. R.(2000). U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Chromium. Open File Report 01-381. e U.S. Government..161pp DOI: https://doi.org/10.3133/ofr01381

Yu, D. (2008). Agency for Toxic Substances and Disease Registry Case Studies in Environmental Medicine (CSEM) Chromium Toxicity 67pp.‏

Bregnbak, D., Johansen, J. D., Jellesen, M. S., Zachariae, C., Menné, T., & Thyssen, J. P. (2015). Chromium allergy and dermatitis: prevalence and main findings. Contact dermatitis, 73(5), 261-280 DOI: https://doi.org/10.1111/cod.12436

Palmer, C. D., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental health perspectives, 92, 25-40 DOI: https://doi.org/10.1289/ehp.919225

Prasad, S., Yadav, K. K., Kumar, S., Gupta, N., Cabral-Pinto, M. M., Rezania, S., ... & Alam, J. (2021). Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management, 285, 112174 DOI: https://doi.org/10.1016/j.jenvman.2021.112174

Wani, K. I., Naeem, M., & Aftab, T. (2022). Chromium in plant-soil Nexus: Speciation, uptake, transport and sustainable remediation techniques. Environmental Pollution, 120350 DOI: https://doi.org/10.1016/j.envpol.2022.120350

Cempel, M., & Nikel, G. J. P. J. S. (2006). Nickel: A review of its sources and environmental toxicology. Polish journal of environmental studies, 15(3)

Yin, X., Hong, L., & Chen, B. H. (2004). Role of a Pb2+ stabilizer in the electroless nickel plating system: A theoretical exploration. The Journal of Physical Chemistry B, 108(30), 10919-10929 DOI: https://doi.org/10.1021/jp036070k

Norgate, T. E., Jahanshahi, S., & Rankin, W. J. (2007). Assessing the environmental impact of metal production processes. Journal of Cleaner Production, 15(8-9), 838-848 DOI: https://doi.org/10.1016/j.jclepro.2006.06.018

Song, X., Kenston, S. S. F., Kong, L., & Zhao, J. (2017). Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology, 392, 47-54 DOI: https://doi.org/10.1016/j.tox.2017.10.006

Gates, A., Jakubowski, J. A., & Regina, A. C. (2023). Nickel Toxicology. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK592400/

Boer, J. L., Mulrooney, S. B., & Hausinger, R. P. (2014). Nickel-dependent metalloenzymes. Archives of biochemistry and biophysics, 544, 142-152 DOI: https://doi.org/10.1016/j.abb.2013.09.002

Sawers, R. G. (2013). Nickel in bacteria and archaea. Encyclopedia of Metalloproteins; Kretsinger, RH, Uversky, VN, Permyakov, EA, Eds, 1490-1496 DOI: https://doi.org/10.1007/978-1-4614-1533-6_86

Desguin, B., Fellner, M., Riant, O., Hu, J., Hausinger, R. P., Hols, P., & Soumillion, P. (2018). Biosynthesis of the nickel-pincer nucleotide cofactor of lactate racemase requires a CTP-dependent cyclometallase. Journal of Biological Chemistry, 293(32), 12303-12317 DOI: https://doi.org/10.1074/jbc.RA118.003741

Maroney, M. J., & Ciurli, S. (2014). Nonredox nickel enzymes. Chemical reviews, 114(8), 4206-4228 DOI: https://doi.org/10.1021/cr4004488

Ahmad, M. S. A., & Ashraf, M. (2011). Essential roles and hazardous effects of nickel in plants. Reviews of environmental contamination and toxicology, 125-167 DOI: https://doi.org/10.1007/978-1-4614-0668-6_6

Matschullat, J. (2000). Arsenic in the geosphere–a review. The Science of the Total Environment, 249(1–3), 297–312. DOI: https://doi.org/10.1016/S0048-9697(99)00524-0

Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Science of the Total Environment, 366(2–3), 701–721. DOI: https://doi.org/10.1016/j.scitotenv.2005.09.005

Economic Commission for Africa (ECA) (2009). Africa Review Report on Mining. United Nations Economic and Social Council, E/ECA/CFSSD/6/7.

Finnegan, P. M., & Chen, W. (2012). Arsenic toxicity: the effects on plant metabolism. Frontiers in physiology, 3, 182 DOI: https://doi.org/10.3389/fphys.2012.00182

Hussain, M. M., Wang, J., Bibi, I., Shahid, M., Niazi, N. K., Iqbal, J., ... & Rinklebe, J. (2021). Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. Journal of Hazardous Materials, 403, 124027 DOI: https://doi.org/10.1016/j.jhazmat.2020.124027

Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480 DOI: https://doi.org/10.1016/j.envpol.2010.10.016

Asere, T. G., Stevens, C. V., & Du Laing, G. (2019). Use of (modified) natural adsorbents for arsenic remediation: a review. Science of the total environment, 676, 706-720 DOI: https://doi.org/10.1016/j.scitotenv.2019.04.237

Wu, J., Li, Z., Huang, D., Liu, X., Tang, C., Parikh, S. J., & Xu, J. (2020). A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils. Journal of hazardous materials, 387, 122010 DOI: https://doi.org/10.1016/j.jhazmat.2019.122010

Yu S, Tang H, Zhang D, Wang S, Qiu M, Song G, Fu D, Hu B, Wang X (2022) MXenes as emerging nanomaterials in water purifcation and environmental remediation. Sci Total Environ 811:152 DOI: https://doi.org/10.1016/j.scitotenv.2021.152280

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research and public health, 14(1), 94 DOI: https://doi.org/10.3390/ijerph14010094

Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 1-18 DOI: https://doi.org/10.1007/s11274-016-2137-x

Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: constraints and opportunities. Biodegradation, 23, 917-926 DOI: https://doi.org/10.1007/s10532-012-9576-3

Mani D., Kumar C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11, 843–872. doi: 10.1007/s13762-013-0299-8 [CrossRef] [Google Scholar] DOI: https://doi.org/10.1007/s13762-013-0299-8

Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International journal of environmental research and public health, 14(12), 1504 DOI: https://doi.org/10.3390/ijerph14121504

Vinayaka, K. S., & Kadkol, S. (2022). Advances in bioremediation of organometallic pollutants: strategies and future road map. In Biological Approaches to Controlling Pollutants (pp. 233-239). Woodhead Publishing DOI: https://doi.org/10.1016/B978-0-12-824316-9.00012-4

Barbato, R. A., & Reynolds, C. M. (2021). Bioremediation of contaminated soils. In Principles and Applications of Soil Microbiology (pp. 607-631). Elsevier DOI: https://doi.org/10.1016/B978-0-12-820202-9.00022-8

Olguı́n, E. J. (2003). Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnology advances, 22(1-2), 81-91 DOI: https://doi.org/10.1016/S0734-9750(03)00130-7

Chugh, M., Kumar, L., Shah, M. P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 100129 DOI: https://doi.org/10.1016/j.nexus.2022.100129

Behnke, J., & LaRoche, J. (2020). Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs). European Journal of Phycology, 55(3), 339-360 DOI: https://doi.org/10.1080/09670262.2020.1744039

Otondo, A., Kokabian, B., Stuart-Dahl, S., & Gude, V. G. (2018). Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. Journal of Environmental Chemical Engineering, 6(2), 3213-3222 DOI: https://doi.org/10.1016/j.jece.2018.04.064

Zeng, G., Zhang, R., Liang, D., Wang, F., Han, Y., Luo, Y., ... & Sun, D. (2023). Comparison of the Advantages and Disadvantages of Algae Removal Technology and Its Development Status. Water, 15(6), 1104 DOI: https://doi.org/10.3390/w15061104

Waldron, K. J., & Robinson, N. J. (2009). How do bacterial cells ensure that metalloproteins get the correct metal?. Nature Reviews Microbiology, 7(1), 25-35 DOI: https://doi.org/10.1038/nrmicro2057

Yang, J., Cao, J., Xing, G., & Yuan, H. (2015). Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresource technology, 175, 537-544 DOI: https://doi.org/10.1016/j.biortech.2014.10.124

Jasrotia, S., Kansal, A., & Mehra, A. (2017). Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Applied Water Science, 7, 889-896 DOI: https://doi.org/10.1007/s13201-015-0300-4

Dominic, V. J., Murali, S., & Nisha, M. C. (2009). Phycoremediation efficiency of three micro algae Chlorella vulgaris, Synechocystis salina and Gloeocapsa gelatinosa. SB Acad Rev, 16(1&2), 138-146

Sharma, A., & Bhatti, M. S. (2022). Simultaneous Removal of Organic Matter and Nutrients from High Strength Organic Wastewater Using Sequencing Batch Reactor (SBR). Processes, 10(10), 1903 DOI: https://doi.org/10.3390/pr10101903

Satpal, K. A., & Khambete, A. K. (2016). Waste water treatment using micro-algae—a review paper. Int J Eng Technol Manag Appl Sci, 4(2), 188-192

Toyama, T., Kasuya, M., Hanaoka, T., Kobayashi, N., Tanaka, Y., Inoue, D., ... & Mori, K. (2018). Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnology for biofuels, 11(1), 1-12 DOI: https://doi.org/10.1186/s13068-018-1174-0

Edwards, C. D., Beatty, J. C., Loiselle, J. B., Vlassov, K. A., & Lefebvre, D. D. (2013). Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms. BMC microbiology, 13, 1-11 DOI: https://doi.org/10.1186/1471-2180-13-161

Kelly, D. J., Budd, K., & Lefebvre, D. D. (2007). Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae. Archives of microbiology, 187, 45-53 DOI: https://doi.org/10.1007/s00203-006-0170-0

Sundaramoorthy, B., Thiagarajan, K., Mohan, S., Mohan, S., Rao, P. R., Ramamoorthy, S., & Chandrasekaran, R. (2016). Biomass characterisation and phylogenetic analysis of microalgae isolated from estuaries: Role in phycoremediation of tannery effluent. Algal research, 14, 92-99 DOI: https://doi.org/10.1016/j.algal.2015.12.016

Rajamani, S., Siripornadulsil, S., Falcao, V., Torres, M., Colepicolo P. and Sayre, R., 2007. Phycoremediation of Heavy Metals Using Transgenic Microalgae. In: León, R., Galván, A., Fernández, E. (eds.), Transgenic Microalgae as Green Cell Factories. Springer, New York. pp. 99-109. DOI: https://doi.org/10.1007/978-0-387-75532-8_9

Priatni, S., Ratnaningrum, D., Warya, S., & Audina, E. (2018, June). Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp. In IOP Conference Series: Earth and Environmental Science (Vol. 160, No. 1, p. 012006). IOP Publishing DOI: https://doi.org/10.1088/1755-1315/160/1/012006

Gagrai, M. K., Das, C., & Golder, A. K. (2013). Reduction of Cr (VI) into Cr (III) by Spirulina dead biomass in aqueous solution: kinetic studies. Chemosphere, 93(7), 1366-1371 DOI: https://doi.org/10.1016/j.chemosphere.2013.08.021

Mrvčić, J., Stanzer, D., Šolić, E., & Stehlik-Tomas, V. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology, 28(9), 2771-2782 DOI: https://doi.org/10.1007/s11274-012-1094-2

Ibuot, J. C., Okeke, F. N., George, N. J., & Obiora, D. N. (2017). Geophysical and physicochemical characterization of organic waste contamination of hydrolithofacies in the coastal dumpsite of Akwa Ibom State, Southern Nigeria. Water Science and Technology: Water Supply, 17(6), 1626-1637 DOI: https://doi.org/10.2166/ws.2017.066

Pradhan, D., Devi, N., & Sukla, L. B. (2018). Biosorption of hexavalent chromium using biomass of microalgae scenedesmus SP. International Journal of Engineering & Technology, 7(3), 558-563

Saunders, R. J., Paul, N. A., Hu, Y., & de Nys, R. (2012). Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation. PloS one, 7(5), e36470 DOI: https://doi.org/10.1371/journal.pone.0036470

Gong, W., Yan, X., Wang, J., Hu, T., & Gong, Y. (2011). Long-term applications of chemical and organic fertilizers on plant-available nitrogen pools and nitrogen management index. Biology and Fertility of Soils, 47, 767-775 DOI: https://doi.org/10.1007/s00374-011-0585-x

Liu, S., Zeng, G., Niu, Q., Gong, J., Hu, X., Lu, L., Zhou, Y., Hu, X., Chen, M., Yan, M., (2015). Effect of Pb(II) on phenanthrene degradation by new isolated Bacillus sp. P1. RSC Adv. 5, 55812–55818. DOI: https://doi.org/10.1039/C5RA04867B

Chaturvedi, K. R., Fogat, M., & Sharma, T. (2021). Low Temperature rheological characterization of single-step silica nanofluids: An additive in refrigeration and gas hydrate drilling applications. Journal of Petroleum Science and Engineering, 204, 108742 DOI: https://doi.org/10.1016/j.petrol.2021.108742

Goswami, R. K., Agrawal, K., Shah, M. P., & Verma, P. (2022). Bioremediation of heavy metals from wastewater: a current perspective on microalgae‐based future. Letters in Applied Microbiology, 75(4), 701-717 DOI: https://doi.org/10.1111/lam.13564

Agrawal, K., Bhatt, A., Bhardwaj, N., Kumar, B., & Verma, P. (2020). Algal biomass: potential renewable feedstock for biofuels production–part I. Biofuel production technologies: critical analysis for sustainability, 203-237 DOI: https://doi.org/10.1007/978-981-13-8637-4_8

Samal, D.P.K., Sukla, L.B., Pattanaik, A. and Pradhan, D. (2020) Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Mater Today Proc 30, 346– 350. DOI: https://doi.org/10.1016/j.matpr.2020.02.165

Soeprobowati, T. R., & Hariyati, R. (2012, October). The potential used of microalgae for heavy metals remediation. In Proceeding The 2nd International Seminar on New Paradigm and Innovation on natural Sciences and Its Application, Diponegoro University, Semarang Indonesia (Vol. 3, pp. 72-87)

Shokri Khoubestani, R., Mirghaffari, N., & Farhadian, O. (2015). Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass‐derived biosorbent. Environmental Progress & Sustainable Energy, 34(4), 949-956 DOI: https://doi.org/10.1002/ep.12071

Cheng, J., Yin, W., Chang, Z., Lundholm, N., & Jiang, Z. (2017). Biosorption capacity and kinetics of cadmium (II) on live and dead Chlorella vulgaris. Journal of applied phycology, 29, 211-221 DOI: https://doi.org/10.1007/s10811-016-0916-2

Danouche, M., El Ghachtouli, N., & El Arroussi, H. (2021). Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon, 7(7), e07609 DOI: https://doi.org/10.1016/j.heliyon.2021.e07609

Liapis, A. I., & Rippin, D. W. (1978). The simulation of binary adsorption in activated carbon columns by using estimates of diffusional resistance within the carbon particles derived from batch experiments. Chem. Eng. Sci.;(United Kingdom), 33(5) DOI: https://doi.org/10.1016/0009-2509(78)80021-9

Chiou, C. F., Hay, J. W., Wallace, J. F., Bloom, B. S., Neumann, P. J., Sullivan, S. D., ... & Ofman, J. J. (2003). Development and validation of a grading system for the quality of cost-effectiveness studies. Medical care, 32-44 DOI: https://doi.org/10.1097/00005650-200301000-00007

Meshko, V., Markovska, L., Mincheva, M., & Rodrigues, A. E. (2001). Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water research, 35(14), 3357-3366 DOI: https://doi.org/10.1016/S0043-1354(01)00056-2

Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass and bioenergy, 35(5), 1633-1645 DOI: https://doi.org/10.1016/j.biombioe.2011.02.033

Gupta, V. K., Mohan, D., Sharma, S., & Sharma, M. (2000). Removal of basic dyes (rhodamine B and methylene blue) from aqueous solutions using bagasse fly ash. Separation Science and Technology, 35(13), 2097-2113 DOI: https://doi.org/10.1081/SS-100102091

Vinod V.P. and Anirudham T.S.(2001) "Adsorption of Tannic Acid on Zirconium pillared clay " ,J.Chem. Technol.Biotechnol. ,77:92-101. DOI: https://doi.org/10.1002/jctb.530

Hammer, W. I., & Pfefer, M. T. (2005). Treatment of a case of subacute lumbar compartment syndrome using the Graston technique. Journal of manipulative and physiological therapeutics, 28(3), 199-204 DOI: https://doi.org/10.1016/j.jmpt.2005.02.010

Atkins, P., & de Paula, J. (2006). Atkins. Physical chemistry, 8, 798

Kutarov, V. V., Tarasevich, Y. I., Aksenenko, E. V., & Dlubovskiy, R. M. (2013). ADSORPTION EQUILIBRIUM AND HYSTERESIS IN OPEN SLIT-LIKE MICROPORES. Chemistry, Physics & Technology of Surface/Khimiya, Fizyka ta Tekhnologiya Poverhni, 4(4) DOI: https://doi.org/10.15407/hftp04.04.351

Dąbrowski, A. (2001). Adsorption—from theory to practice. Advances in colloid and interface science, 93(1-3), 135-224 DOI: https://doi.org/10.1016/S0001-8686(00)00082-8

Meyer, S., Glaser, B., & Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental science & technology, 45(22), 9473-9483 DOI: https://doi.org/10.1021/es201792c

Yu, K. L., Show, P. L., Ong, H. C., Ling, T. C., Lan, J. C. W., Chen, W. H., & Chang, J. S. (2017). Microalgae from wastewater treatment to biochar–feedstock preparation and conversion technologies. Energy conversion and management, 150, 1-13 DOI: https://doi.org/10.1016/j.enconman.2017.07.060

Bach, Q. V., & Chen, W. H. (2017). Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource technology, 246, 88-100 DOI: https://doi.org/10.1016/j.biortech.2017.06.087

Dai, S. J., Zhao, Y. C., Niu, D. J., Li, Q., & Chen, Y. (2019). Preparation and reactivation of magnetic biochar by molten salt method: Relevant performance for chlorine-containing pesticides abatement. Journal of the Air & Waste Management Association, 69(1), 58-70 DOI: https://doi.org/10.1080/10962247.2018.1510441

Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z., Pan, Z., & Xing, B. (2012). Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource technology, 118, 120-127 DOI: https://doi.org/10.1016/j.biortech.2012.05.008

Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment—conversion technologies and applications. Applied Sciences, 10(10), 3492 DOI: https://doi.org/10.3390/app10103492

Ayele, A., Suresh, A., Benor, S., & Konwarh, R. (2021). Optimization of chromium (VI) removal by indigenous microalga (Chlamydomonas sp.)‐based biosorbent using response surface methodology. Water Environment Research, 93(8), 1276-1288 DOI: https://doi.org/10.1002/wer.1510

Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., ... & Fang, Z. (2020). Magnetic biochar for environmental remediation: A review. Bioresource technology, 298, 122468 DOI: https://doi.org/10.1016/j.biortech.2019.122468

Xiao, B., Jia, J., Wang, W., Zhang, B., Ming, H., Ma, S., ... & Zhao, M. (2023). A Review on magnetic biochar for the removal of heavy metals from contaminated soils: preparation, application, and microbial response. Journal of Hazardous Materials Advances, 100254 DOI: https://doi.org/10.1016/j.hazadv.2023.100254

Cheng, S., Chen, T., Xu, W., Huang, J., Jiang, S., & Yan, B. (2020). Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules, 25(14), 3167 DOI: https://doi.org/10.3390/molecules25143167

Qu, J., Akindolie, M. S., Feng, Y., Jiang, Z., Zhang, G., Jiang, Q., ... & Zhang, Y. (2020). One-pot hydrothermal synthesis of NaLa (CO3) 2 decorated magnetic biochar for efficient phosphate removal from water: kinetics, isotherms, thermodynamics, mechanisms and reusability exploration. Chemical Engineering Journal, 394, 124915 DOI: https://doi.org/10.1016/j.cej.2020.124915

Zhang, Y., Qu, J., Yuan, Y., Song, H., Liu, Y., Wang, S., ... & Li, Z. (2022). Simultaneous scavenging of Cd (II) and Pb (II) from water by sulfide-modified magnetic pinecone-derived hydrochar. Journal of Cleaner Production, 341, 130758 DOI: https://doi.org/10.1016/j.jclepro.2022.130758

Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143-144 DOI: https://doi.org/10.1038/447143a

Dey, A., Singh, R., & Purkait, M. K. (2014). Cobalt ferrite nanoparticles aggregated schwertmannite: A novel adsorbent for the efficient removal of arsenic. Journal of Water Process Engineering, 3, 1-9 DOI: https://doi.org/10.1016/j.jwpe.2014.07.002

Jasim, A. M., & Alzurfi, S. K. L. (2022). Compared cadmium adsorption from biochar and magnetite biochar in water. International Journal of Health Sciences, 6(S5), 11603–11621. https://doi.org/10.53730/ijhs.v6nS5.11998 DOI: https://doi.org/10.53730/ijhs.v6nS5.11998

Yoo, D. Y., You, I., & Lee, S. J. (2017). Electrical properties of cement-based composites with carbon nanotubes, graphene, and graphite nanofibers. Sensors, 17(5), 1064 DOI: https://doi.org/10.3390/s17051064

Wang, L., Roy, D., Lin, S. S., Yuan, S. T., and Sun, L. (2017). Hypoglycemic Effect of Camellia Chrysantha Extract on Type 2 Diabetic Mice Model. Bangladesh J. Pharmacol. 12, 359. doi:10.3329/bjp.v12i4.32995 DOI: https://doi.org/10.3329/bjp.v12i4.32995

Feng, Z., Yuan, R., Wang, F., Chen, Z., Zhou, B., & Chen, H. (2021). Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. Science of The Total Environment, 765, 142673 DOI: https://doi.org/10.1016/j.scitotenv.2020.142673

Reddy, D. H. K., & Lee, S. M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103

Qu, S., Huang, F., Yu, S., Chen, G., & Kong, J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Journal of Hazardous Materials, 160(2-3), 643-647 DOI: https://doi.org/10.1016/j.jhazmat.2008.03.037

Thines, K. R., Abdullah, E. C., Mubarak, N. M., & Ruthiraan, M. (2017). Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renewable and Sustainable Energy Reviews, 67, 257-276 DOI: https://doi.org/10.1016/j.rser.2016.09.057

Theydan, S. K., & Ahmed, M. J. (2012). Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis, 97, 116-122 DOI: https://doi.org/10.1016/j.jaap.2012.05.008

Zeghioud, H., Fryda, L., Djelal, H., Assadi, A., & Kane, A. (2022). A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. Journal of Water Process Engineering, 47, 102801 DOI: https://doi.org/10.1016/j.jwpe.2022.102801

Reddy, D. H. K., & Lee, S. M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103 DOI: https://doi.org/10.1016/j.colsurfa.2014.03.105

Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20, 358-368 DOI: https://doi.org/10.1007/s11356-012-0873-5

Qiu M, Hu B, Chen Z, Yang H, Zhuang L, Wang X (2021) Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar 3(2):117–123 DOI: https://doi.org/10.1007/s42773-021-00098-y

Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X (2022) Biochar for the removal of contaminants from soil and water: a review. Biochar 4:19 DOI: https://doi.org/10.1007/s42773-022-00146-1

Selvaraj, R., Pai, S., Vinayagam, R., Varadavenkatesan, T., Kumar, P. S., Duc, P. A., & Rangasamy, G. (2022). A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere, 136331 DOI: https://doi.org/10.1016/j.chemosphere.2022.136331

Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70-85 DOI: https://doi.org/10.1016/j.chemosphere.2014.12.058

Amabilis-Sosa, L. E., Valenzuela, E. I., Quezada-Renteria, J. A., & Pat-Espadas, A. M. (2022). Biochar-Assisted Bioengineered Strategies for Metal Removal: Mechanisms, Key Considerations, and Perspectives for the Treatment of Solid and Liquid Matrixes. Sustainability, 14(24), 17049 DOI: https://doi.org/10.3390/su142417049

Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77-83 DOI: https://doi.org/10.1016/j.chemosphere.2015.05.093

Flesch, F., Berger, P., Robles-Vargas, D., Santos-Medrano, G. E., & Rico-Martínez, R. (2019). Characterization and determination of the toxicological risk of biochar using invertebrate toxicity tests in the state of Aguascalientes, México. Applied Sciences, 9(8), 1706 DOI: https://doi.org/10.3390/app9081706

de Lima, R. O. A., Bazo, A. P., Salvadori, D. M. F., Rech, C. M., de Palma Oliveira, D., & de Aragão Umbuzeiro, G. (2007). Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 626(1-2), 53-60 DOI: https://doi.org/10.1016/j.mrgentox.2006.08.002

Zeghioud, H., Nguyen-Tri, P., Khezami, L., Amrane, A., & Assadi, A. A. (2020). Review on discharge Plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. Journal of Water Process Engineering, 38, 101664 DOI: https://doi.org/10.1016/j.jwpe.2020.101664

Kumar, V., Singh, J., and Chopra, A. K. (2018). Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Int. J. Phytoremediation 20, 507–521. doi: 10.1080/15226514.2017.1393391 DOI: https://doi.org/10.1080/15226514.2017.1393391

Dewage, N. B., Liyanage, A. S., Pittman Jr, C. U., Mohan, D., & Mlsna, T. (2018). Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresource technology, 263, 258-265 DOI: https://doi.org/10.1016/j.biortech.2018.05.001

Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of environmental management, 197, 732-749 DOI: https://doi.org/10.1016/j.jenvman.2017.03.087

Zhang, Y., Fry, C. G., Pedersen, J. A., & Hamers, R. J. (2017). Dynamics and morphology of nanoparticle-linked polymers elucidated by nuclear magnetic resonance. Analytical chemistry, 89(22), 12399-12407 DOI: https://doi.org/10.1021/acs.analchem.7b03489

Luo, K., Pang, Y., Wang, D., Li, X., Wang, L., Lei, M., ... & Yang, Q. (2021). A critical review on the application of biochar in environmental pollution remediation: Role of persistent free radicals (PFRs). Journal of Environmental Sciences, 108, 201-216 DOI: https://doi.org/10.1016/j.jes.2021.02.021

Othmani, A., John, J., Rajendran, H., Mansouri, A., Sillanpää, M., & Chellam, P. V. (2021). Biochar and activated carbon derivatives of lignocellulosic fibers towards adsorptive removal of pollutants from aqueous systems: Critical study and future insight. Separation and Purification Technology, 274, 119062 . DOI: https://doi.org/10.1016/j.seppur.2021.119062

Aboudalle, A., Djelal, H., Domergue, L., Fourcade, F., & Amrane, A. (2021). A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole. Journal of Hazardous Materials, 415, 125705 DOI: https://doi.org/10.1016/j.jhazmat.2021.125705

Osagie, C., Othmani, A., Ghosh, S., Malloum, A., Esfahani, Z. K., & Ahmadi, S. (2021). Dyes adsorption from aqueous media through the nanotechnology: A review. Journal of Materials Research and Technology, 14, 2195-2218 DOI: https://doi.org/10.1016/j.jmrt.2021.07.085

Kim, S., Nam, S. N., Jang, A., Jang, M., Park, C. M., Son, A., ... & Yoon, Y. (2022). Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere, 286, 131916 DOI: https://doi.org/10.1016/j.chemosphere.2021.131916

Joseph, B., Kaetzl, K., Hensgen, F., Schäfer, B., & Wachendorf, M. (2020). Sustainability assessment of activated carbon from residual biomass used for micropollutant removal at a full-scale wastewater treatment plant. Environmental Research Letters, 15(6), 064023 DOI: https://doi.org/10.1088/1748-9326/ab8330

Lehmann J, Joseph S (ed) (2009) Biochar for environmental management: science and technology. First published by Earthscan in the UK and USA.pp405

Mandal, S., Sarkar, B., Bolan, N., Novak, J., Ok, Y. S., Van Zwieten, L., ... & Naidu, R. (2016). Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 46(17), 1367-1401 DOI: https://doi.org/10.1080/10643389.2016.1239975

Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570 DOI: https://doi.org/10.1016/j.btre.2020.e00570

Zhao, T., & Feng, T. (2016). Application of modified chitosan microspheres for nitrate and phosphate adsorption from aqueous solution. RSC advances, 6(93), 90878-90886 DOI: https://doi.org/10.1039/C6RA17474D

Shaheen SM, El-Naggar A, Wang JX, Hassan NEE, Niazi NK, Wang HL, Tsang DCW, Ok YS, Bolan N, Rinklebe J (2019) Biochar as an (Im)mobilizing agent for the potentially toxic elements in contaminated soils-science direct. Biochar Biomass Waste 14:255–274 DOI: https://doi.org/10.1016/B978-0-12-811729-3.00014-5

Hu BW, Ai YJ, Jin J, Hayat T, Alsaedi A, Zhuang L, Wang XK (2020) Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2:47–64 DOI: https://doi.org/10.1007/s42773-020-00044-4

Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3, 255-281 DOI: https://doi.org/10.1007/s42773-021-00101-6

Taha, S. M., Amer, M. E., Elmarsafy, A. E., & Elkady, M. Y. (2014). Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. Journal of Environmental Chemical Engineering, 2(4), 2013-2025 DOI: https://doi.org/10.1016/j.jece.2014.09.001

Zhu DQ, Pignatello JJ (2005) Characterization of aromatic compound sorptive interactions with black carbon (Charcoal) assisted by graphite as a model. Environ Sci Technol 39(7):2033–2041 DOI: https://doi.org/10.1021/es0491376

Tan GC, Xu N, Xu YR, Wang HY, Sun WL (2016) Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Biores Technol 211:727–735. DOI: https://doi.org/10.1016/j.biortech.2016.03.147

Downloads

Published

2023-12-31

How to Cite

Kadhum Lafta Alzurfi, S., & Jameel Mushtaq, K. (2023). HEAVY METAL BIOREMEDIATION BY ALGAE: A REVIEW OF REMOVAL METHODS, BY-PRODUCT RECOVERY, OBSTACLES, AND POTENTIAL FUTURE APPLICATIONS. Al-Kufa University Journal for Biology, 15(3), 99–121. https://doi.org/10.36320/ajb/v15.i2.12531