HEAVY METAL BIOREMEDIATION BY ALGAE: A REVIEW OF REMOVAL METHODS, BY-PRODUCT RECOVERY, OBSTACLES, AND POTENTIAL FUTURE APPLICATIONS.
DOI:
https://doi.org/10.36320/ajb/v15.i2.12531Keywords:
Algae, Adsorption, Bioremediation, BiocharAbstract
Due to the constant discharge of many pollutants into the aquatic environment, water pollution is a major environmental concern on a global level. The treatment of heavy metals found in wastewater has attracted attention to novel technologies in recent years. The utilization of biological processes has been investigated because they are dependable, straightforward, and eco-friendly. Through this review, the researchers attempt to disseminate information regarding the environmental dangers posed by heavy metals, the function of bioremediators employed in heavy metal processing, the many microalgae strains utilized for heavy metal removal, and their modes of action for remediation. Different external and intracellular processes are used by diverse microalgae species to remove heavy metals. In-depth discussion is provided on the assessment of microalgae's processing potential and the usage of biochar generated from algae in the removal of heavy metals. It is obvious that bioremediation of heavy metals alone is not a viable business plan. As a result, additional work is being done to create integrated treatment plans to make this procedure more affordable and long-lasting. This review describes recent developments in the use of microalgae for heavy metal therapy. Additionally, the challenges that must be met in order to improve this process efficiency, economy, sustainability, and cleanliness are covered. From the comments in this review, it can be inferred that bioremediation can be crucial to the sustainable processing of heavy metals and the development of the bio-economy.
Downloads
References
Sousa, J.C.G., Ribeiro, A.R., Barbosa, M.O., Pereira, M.F.R., Silva, A.M.T., (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 344, 146–162.
Kim, H.T., Lee, T.G., (2017). A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr and Cd). Chemosphere 178, 479–485.
Zulfiqar, M., Samsudin, M., Sufian, S., (2019). Modelling and optimization of photocatalytic degradation of phenol via Tio2 nanoparticles: An insight into response surface methodology and artificial neural network. J. Photoch. Photobio., 384, 112039.
Wollmann, F., Dietze, S., Ackermann, J., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860–871 .
Peng, Q., Chen, W., Wu, L., & Bai, L. (2017). The Uptake, Accumulation, and Toxic Effects of Cadmium in Barnyardgrass (Echinochloa crus-galli). Polish Journal of Environmental Studies, 26.(3)
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.
Hall, J. L.(2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp. Bot., 53:1–11.
SIMON, D. F.; DAVIS, T. A.; TERCIER- WAEBER, M. T.; ENGLAND, R.; WILKINSON, K. J. Insitu evaluation of cadmium biomarkers in green algae. Environ, Pollut, 2011, 159:2630-2636.
Alam, M.A., Wan, C., Zhao, X.Q., Chen, L.J., Bai, F.W., (2015). Enhanced removal of Zn2þ or Cd2þ by self flocculating microalga Chlorella vulgaris JSC7. J. Hazard. Mater. 298, 38-35.
Cai, X., Zheng, X., Zhang, D., Iqbal, W., Liu, C., Yang, B., Zhao, X., Lu, X., Mao, Y., (2019). Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotox. Environ. Saf. 181, 472e480.
Bilal, M., Rasheed, T., Sosa-Hernandez, J.E., Raza, A., Nabeel, F., Iqbal, H.M.N., (2018). Biosorption: an interplay between marine algae and potentially toxic elements a review. Mar. Drugs 16, 1e16.
Aslam, A., Thomas-Hall, S.R., Mughal, T., Zaman, Q., Ehsan, N., Javied, S., Schenk, P.M., (2019). Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations. Environ. Manag. 241, 243e250.
Rizwan, M., Ali, S., Qayyum, M.F., Ibrahim, M., Ziaurrehman, M., Abbas, T., Ok, Y.S.,(2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Poll. Res. 23, 2230e2248.
Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy metals, 10, 115-132
Herawati, N., Suzuki, S., Hayashi, K., Rivai, I. F., & Koyama, H. (2000). Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bulletin of environmental contamination and toxicology, 64(1), 33-39
Förstner, U. (1995). Non-linear release of metals from aquatic sediments. Biogeodynamics of pollutants in soils and sediments: Risk assessment of delayed and non-linear responses, 247-307
Bocanegra, A., Bastida, S., Benedi, J., Rodenas, S., & Sanchez-Muniz, F. J. (2009). Characteristics and nutritional and cardiovascular-health properties of seaweeds. Journal of medicinal food, 12(2), 236-258
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60
Gardea-Torresdey, J. L., Rodriguez, E., Parsons, J. G., Peralta-Videa, J. R., Meitzner, G., & Cruz-Jimenez, G. (2005). Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Analytical and Bioanalytical Chemistry, 382, 347-352
Gazwi, H. S. S., Yassien, E. E., and Hassan, H. M. (2020). Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol. Environ. Safe 192, 110297. doi:10.1016/j.ecoenv.2020.110297
Saeed, H. I., Alyas, J., Saeed, A., Majeed, T., & Anjum, I. (2021). Role of Microorganisms in Bioremediation. Pakistan Journal of Biochemistry and Biotechnology, 2(2), 140-176
Akpor OB, Ohiobor GO, Olaolu DT (2014) Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng 2(4):37–43. https://doi.org/10.11648/j.abb.20140204.11.
Henson, M. C., & Chedrese, P. J. (2004). Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Experimental biology and medicine, 229(5), 383-392
Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian Journal of Medical Research, 128(4), 557-564.
Chowdhury, M. J., McDonald, D. G., & Wood, C. M. (2004). Gastrointestinal uptake and fate of cadmium in rainbow trout acclimated to sublethal dietary cadmium. Aquatic Toxicology, 69(2), 149-163
Melgar, M.J., Perez, M., Garcia, M.A., Alonso, J., Miguez, B. (1997). The toxic and accumulative effects of short‐term exposure to cadmium in rainbow trout (Oncorhynchus mykiss). Vet. Hum. Toxicol. 39: 79–83.
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782
Mudgal, V., Madaan, N., Mudgal, A., Singh, R. B., & Mishra, S. (2010). Effect of toxic metals on human health. The open Nutraceuticals journal, 3(1)
Mutlu, A., Lee, B.K., Park, G.H., Yu, B.G. and Lee, C.H. (2012). Long-term Concentrations of Airborne Cadmium in Metropolitan Cities in Korea and Potential Health Risks. Atmos. Environ. 47: 164–173.
Howard, J. A., Kuznietsova, H., Dziubenko, N., Aigle, A., Natuzzi, M., Thomas, E., ... & Tillement, O. (2023). Combating lead and cadmium exposure with an orally administered chitosan-based chelating polymer. Scientific Reports, 13(1), 2215
Ellingsen, D. G., Horn, N., & Aaseth, J. (2007). Handbook on the Toxicology of Metals. Third Edition. Academic Press is an imprint of Elsevier.943pp
Goyer, R. A. (1986). Toxic effects of metals. Pages 582-635 in C. D. Klaassen, M. O. Amdur, and J. Doull (eds.). Casarett and Doull's toxicology. Third edition. Macmillan Publ., New York.
Kerger, B. D., Paustenbach, D. J., Corbett, G. E., & Finley, B. L. (1996). Absorption and elimination of trivalent and hexavalent chromium in humans following ingestion of a bolus dose in drinking water. Toxicology and applied pharmacology, 141(1), 145-158
Papp, J. F., & Lipin, B. R.(2000). U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Chromium. Open File Report 01-381. e U.S. Government..161pp
Yu, D. (2008). Agency for Toxic Substances and Disease Registry Case Studies in Environmental Medicine (CSEM) Chromium Toxicity 67pp.
Bregnbak, D., Johansen, J. D., Jellesen, M. S., Zachariae, C., Menné, T., & Thyssen, J. P. (2015). Chromium allergy and dermatitis: prevalence and main findings. Contact dermatitis, 73(5), 261-280
Palmer, C. D., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental health perspectives, 92, 25-40
Prasad, S., Yadav, K. K., Kumar, S., Gupta, N., Cabral-Pinto, M. M., Rezania, S., ... & Alam, J. (2021). Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management, 285, 112174
Wani, K. I., Naeem, M., & Aftab, T. (2022). Chromium in plant-soil Nexus: Speciation, uptake, transport and sustainable remediation techniques. Environmental Pollution, 120350
Cempel, M., & Nikel, G. J. P. J. S. (2006). Nickel: A review of its sources and environmental toxicology. Polish journal of environmental studies, 15(3)
Yin, X., Hong, L., & Chen, B. H. (2004). Role of a Pb2+ stabilizer in the electroless nickel plating system: A theoretical exploration. The Journal of Physical Chemistry B, 108(30), 10919-10929
Norgate, T. E., Jahanshahi, S., & Rankin, W. J. (2007). Assessing the environmental impact of metal production processes. Journal of Cleaner Production, 15(8-9), 838-848
Song, X., Kenston, S. S. F., Kong, L., & Zhao, J. (2017). Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology, 392, 47-54
Gates, A., Jakubowski, J. A., & Regina, A. C. (2023). Nickel Toxicology. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK592400/
Boer, J. L., Mulrooney, S. B., & Hausinger, R. P. (2014). Nickel-dependent metalloenzymes. Archives of biochemistry and biophysics, 544, 142-152
Sawers, R. G. (2013). Nickel in bacteria and archaea. Encyclopedia of Metalloproteins; Kretsinger, RH, Uversky, VN, Permyakov, EA, Eds, 1490-1496
Desguin, B., Fellner, M., Riant, O., Hu, J., Hausinger, R. P., Hols, P., & Soumillion, P. (2018). Biosynthesis of the nickel-pincer nucleotide cofactor of lactate racemase requires a CTP-dependent cyclometallase. Journal of Biological Chemistry, 293(32), 12303-12317
Maroney, M. J., & Ciurli, S. (2014). Nonredox nickel enzymes. Chemical reviews, 114(8), 4206-4228
Ahmad, M. S. A., & Ashraf, M. (2011). Essential roles and hazardous effects of nickel in plants. Reviews of environmental contamination and toxicology, 125-167
Matschullat, J. (2000). Arsenic in the geosphere–a review. The Science of the Total Environment, 249(1–3), 297–312.
Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Science of the Total Environment, 366(2–3), 701–721.
Economic Commission for Africa (ECA) (2009). Africa Review Report on Mining. United Nations Economic and Social Council, E/ECA/CFSSD/6/7.
Finnegan, P. M., & Chen, W. (2012). Arsenic toxicity: the effects on plant metabolism. Frontiers in physiology, 3, 182
Hussain, M. M., Wang, J., Bibi, I., Shahid, M., Niazi, N. K., Iqbal, J., ... & Rinklebe, J. (2021). Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. Journal of Hazardous Materials, 403, 124027
Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480
Asere, T. G., Stevens, C. V., & Du Laing, G. (2019). Use of (modified) natural adsorbents for arsenic remediation: a review. Science of the total environment, 676, 706-720
Wu, J., Li, Z., Huang, D., Liu, X., Tang, C., Parikh, S. J., & Xu, J. (2020). A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils. Journal of hazardous materials, 387, 122010
Yu S, Tang H, Zhang D, Wang S, Qiu M, Song G, Fu D, Hu B, Wang X (2022) MXenes as emerging nanomaterials in water purifcation and environmental remediation. Sci Total Environ 811:152
Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research and public health, 14(1), 94
Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 1-18
Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: constraints and opportunities. Biodegradation, 23, 917-926
Mani D., Kumar C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11, 843–872. doi: 10.1007/s13762-013-0299-8 [CrossRef] [Google Scholar]
Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International journal of environmental research and public health, 14(12), 1504
Vinayaka, K. S., & Kadkol, S. (2022). Advances in bioremediation of organometallic pollutants: strategies and future road map. In Biological Approaches to Controlling Pollutants (pp. 233-239). Woodhead Publishing
Barbato, R. A., & Reynolds, C. M. (2021). Bioremediation of contaminated soils. In Principles and Applications of Soil Microbiology (pp. 607-631). Elsevier
Olguı́n, E. J. (2003). Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnology advances, 22(1-2), 81-91
Chugh, M., Kumar, L., Shah, M. P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 100129
Behnke, J., & LaRoche, J. (2020). Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs). European Journal of Phycology, 55(3), 339-360
Otondo, A., Kokabian, B., Stuart-Dahl, S., & Gude, V. G. (2018). Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. Journal of Environmental Chemical Engineering, 6(2), 3213-3222
Zeng, G., Zhang, R., Liang, D., Wang, F., Han, Y., Luo, Y., ... & Sun, D. (2023). Comparison of the Advantages and Disadvantages of Algae Removal Technology and Its Development Status. Water, 15(6), 1104
Waldron, K. J., & Robinson, N. J. (2009). How do bacterial cells ensure that metalloproteins get the correct metal?. Nature Reviews Microbiology, 7(1), 25-35
Yang, J., Cao, J., Xing, G., & Yuan, H. (2015). Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresource technology, 175, 537-544
Jasrotia, S., Kansal, A., & Mehra, A. (2017). Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Applied Water Science, 7, 889-896
Dominic, V. J., Murali, S., & Nisha, M. C. (2009). Phycoremediation efficiency of three micro algae Chlorella vulgaris, Synechocystis salina and Gloeocapsa gelatinosa. SB Acad Rev, 16(1&2), 138-146
Sharma, A., & Bhatti, M. S. (2022). Simultaneous Removal of Organic Matter and Nutrients from High Strength Organic Wastewater Using Sequencing Batch Reactor (SBR). Processes, 10(10), 1903
Satpal, K. A., & Khambete, A. K. (2016). Waste water treatment using micro-algae—a review paper. Int J Eng Technol Manag Appl Sci, 4(2), 188-192
Toyama, T., Kasuya, M., Hanaoka, T., Kobayashi, N., Tanaka, Y., Inoue, D., ... & Mori, K. (2018). Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnology for biofuels, 11(1), 1-12
Edwards, C. D., Beatty, J. C., Loiselle, J. B., Vlassov, K. A., & Lefebvre, D. D. (2013). Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms. BMC microbiology, 13, 1-11
Kelly, D. J., Budd, K., & Lefebvre, D. D. (2007). Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae. Archives of microbiology, 187, 45-53
Sundaramoorthy, B., Thiagarajan, K., Mohan, S., Mohan, S., Rao, P. R., Ramamoorthy, S., & Chandrasekaran, R. (2016). Biomass characterisation and phylogenetic analysis of microalgae isolated from estuaries: Role in phycoremediation of tannery effluent. Algal research, 14, 92-99
Rajamani, S., Siripornadulsil, S., Falcao, V., Torres, M., Colepicolo P. and Sayre, R., 2007. Phycoremediation of Heavy Metals Using Transgenic Microalgae. In: León, R., Galván, A., Fernández, E. (eds.), Transgenic Microalgae as Green Cell Factories. Springer, New York. pp. 99-109.
Priatni, S., Ratnaningrum, D., Warya, S., & Audina, E. (2018, June). Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp. In IOP Conference Series: Earth and Environmental Science (Vol. 160, No. 1, p. 012006). IOP Publishing
Gagrai, M. K., Das, C., & Golder, A. K. (2013). Reduction of Cr (VI) into Cr (III) by Spirulina dead biomass in aqueous solution: kinetic studies. Chemosphere, 93(7), 1366-1371
Mrvčić, J., Stanzer, D., Šolić, E., & Stehlik-Tomas, V. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology, 28(9), 2771-2782
Ibuot, J. C., Okeke, F. N., George, N. J., & Obiora, D. N. (2017). Geophysical and physicochemical characterization of organic waste contamination of hydrolithofacies in the coastal dumpsite of Akwa Ibom State, Southern Nigeria. Water Science and Technology: Water Supply, 17(6), 1626-1637
Pradhan, D., Devi, N., & Sukla, L. B. (2018). Biosorption of hexavalent chromium using biomass of microalgae scenedesmus SP. International Journal of Engineering & Technology, 7(3), 558-563
Saunders, R. J., Paul, N. A., Hu, Y., & de Nys, R. (2012). Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation. PloS one, 7(5), e36470
Gong, W., Yan, X., Wang, J., Hu, T., & Gong, Y. (2011). Long-term applications of chemical and organic fertilizers on plant-available nitrogen pools and nitrogen management index. Biology and Fertility of Soils, 47, 767-775
Liu, S., Zeng, G., Niu, Q., Gong, J., Hu, X., Lu, L., Zhou, Y., Hu, X., Chen, M., Yan, M., (2015). Effect of Pb(II) on phenanthrene degradation by new isolated Bacillus sp. P1. RSC Adv. 5, 55812–55818.
Chaturvedi, K. R., Fogat, M., & Sharma, T. (2021). Low Temperature rheological characterization of single-step silica nanofluids: An additive in refrigeration and gas hydrate drilling applications. Journal of Petroleum Science and Engineering, 204, 108742
Goswami, R. K., Agrawal, K., Shah, M. P., & Verma, P. (2022). Bioremediation of heavy metals from wastewater: a current perspective on microalgae‐based future. Letters in Applied Microbiology, 75(4), 701-717
Agrawal, K., Bhatt, A., Bhardwaj, N., Kumar, B., & Verma, P. (2020). Algal biomass: potential renewable feedstock for biofuels production–part I. Biofuel production technologies: critical analysis for sustainability, 203-237
Samal, D.P.K., Sukla, L.B., Pattanaik, A. and Pradhan, D. (2020) Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Mater Today Proc 30, 346– 350.
Soeprobowati, T. R., & Hariyati, R. (2012, October). The potential used of microalgae for heavy metals remediation. In Proceeding The 2nd International Seminar on New Paradigm and Innovation on natural Sciences and Its Application, Diponegoro University, Semarang Indonesia (Vol. 3, pp. 72-87)
Shokri Khoubestani, R., Mirghaffari, N., & Farhadian, O. (2015). Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass‐derived biosorbent. Environmental Progress & Sustainable Energy, 34(4), 949-956
Cheng, J., Yin, W., Chang, Z., Lundholm, N., & Jiang, Z. (2017). Biosorption capacity and kinetics of cadmium (II) on live and dead Chlorella vulgaris. Journal of applied phycology, 29, 211-221
Danouche, M., El Ghachtouli, N., & El Arroussi, H. (2021). Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon, 7(7), e07609
Liapis, A. I., & Rippin, D. W. (1978). The simulation of binary adsorption in activated carbon columns by using estimates of diffusional resistance within the carbon particles derived from batch experiments. Chem. Eng. Sci.;(United Kingdom), 33(5)
Chiou, C. F., Hay, J. W., Wallace, J. F., Bloom, B. S., Neumann, P. J., Sullivan, S. D., ... & Ofman, J. J. (2003). Development and validation of a grading system for the quality of cost-effectiveness studies. Medical care, 32-44
Meshko, V., Markovska, L., Mincheva, M., & Rodrigues, A. E. (2001). Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water research, 35(14), 3357-3366
Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass and bioenergy, 35(5), 1633-1645
Gupta, V. K., Mohan, D., Sharma, S., & Sharma, M. (2000). Removal of basic dyes (rhodamine B and methylene blue) from aqueous solutions using bagasse fly ash. Separation Science and Technology, 35(13), 2097-2113
Vinod V.P. and Anirudham T.S.(2001) "Adsorption of Tannic Acid on Zirconium pillared clay " ,J.Chem. Technol.Biotechnol. ,77:92-101.
Hammer, W. I., & Pfefer, M. T. (2005). Treatment of a case of subacute lumbar compartment syndrome using the Graston technique. Journal of manipulative and physiological therapeutics, 28(3), 199-204
Atkins, P., & de Paula, J. (2006). Atkins. Physical chemistry, 8, 798
Kutarov, V. V., Tarasevich, Y. I., Aksenenko, E. V., & Dlubovskiy, R. M. (2013). ADSORPTION EQUILIBRIUM AND HYSTERESIS IN OPEN SLIT-LIKE MICROPORES. Chemistry, Physics & Technology of Surface/Khimiya, Fizyka ta Tekhnologiya Poverhni, 4(4)
Dąbrowski, A. (2001). Adsorption—from theory to practice. Advances in colloid and interface science, 93(1-3), 135-224
Meyer, S., Glaser, B., & Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental science & technology, 45(22), 9473-9483
Yu, K. L., Show, P. L., Ong, H. C., Ling, T. C., Lan, J. C. W., Chen, W. H., & Chang, J. S. (2017). Microalgae from wastewater treatment to biochar–feedstock preparation and conversion technologies. Energy conversion and management, 150, 1-13
Bach, Q. V., & Chen, W. H. (2017). Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource technology, 246, 88-100
Dai, S. J., Zhao, Y. C., Niu, D. J., Li, Q., & Chen, Y. (2019). Preparation and reactivation of magnetic biochar by molten salt method: Relevant performance for chlorine-containing pesticides abatement. Journal of the Air & Waste Management Association, 69(1), 58-70
Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z., Pan, Z., & Xing, B. (2012). Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource technology, 118, 120-127
Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment—conversion technologies and applications. Applied Sciences, 10(10), 3492
Ayele, A., Suresh, A., Benor, S., & Konwarh, R. (2021). Optimization of chromium (VI) removal by indigenous microalga (Chlamydomonas sp.)‐based biosorbent using response surface methodology. Water Environment Research, 93(8), 1276-1288
Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., ... & Fang, Z. (2020). Magnetic biochar for environmental remediation: A review. Bioresource technology, 298, 122468
Xiao, B., Jia, J., Wang, W., Zhang, B., Ming, H., Ma, S., ... & Zhao, M. (2023). A Review on magnetic biochar for the removal of heavy metals from contaminated soils: preparation, application, and microbial response. Journal of Hazardous Materials Advances, 100254
Cheng, S., Chen, T., Xu, W., Huang, J., Jiang, S., & Yan, B. (2020). Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules, 25(14), 3167
Qu, J., Akindolie, M. S., Feng, Y., Jiang, Z., Zhang, G., Jiang, Q., ... & Zhang, Y. (2020). One-pot hydrothermal synthesis of NaLa (CO3) 2 decorated magnetic biochar for efficient phosphate removal from water: kinetics, isotherms, thermodynamics, mechanisms and reusability exploration. Chemical Engineering Journal, 394, 124915
Zhang, Y., Qu, J., Yuan, Y., Song, H., Liu, Y., Wang, S., ... & Li, Z. (2022). Simultaneous scavenging of Cd (II) and Pb (II) from water by sulfide-modified magnetic pinecone-derived hydrochar. Journal of Cleaner Production, 341, 130758
Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143-144
Dey, A., Singh, R., & Purkait, M. K. (2014). Cobalt ferrite nanoparticles aggregated schwertmannite: A novel adsorbent for the efficient removal of arsenic. Journal of Water Process Engineering, 3, 1-9
Jasim, A. M., & Alzurfi, S. K. L. (2022). Compared cadmium adsorption from biochar and magnetite biochar in water. International Journal of Health Sciences, 6(S5), 11603–11621. https://doi.org/10.53730/ijhs.v6nS5.11998
Yoo, D. Y., You, I., & Lee, S. J. (2017). Electrical properties of cement-based composites with carbon nanotubes, graphene, and graphite nanofibers. Sensors, 17(5), 1064
Wang, L., Roy, D., Lin, S. S., Yuan, S. T., and Sun, L. (2017). Hypoglycemic Effect of Camellia Chrysantha Extract on Type 2 Diabetic Mice Model. Bangladesh J. Pharmacol. 12, 359. doi:10.3329/bjp.v12i4.32995
Feng, Z., Yuan, R., Wang, F., Chen, Z., Zhou, B., & Chen, H. (2021). Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. Science of The Total Environment, 765, 142673
Reddy, D. H. K., & Lee, S. M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103
Qu, S., Huang, F., Yu, S., Chen, G., & Kong, J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Journal of Hazardous Materials, 160(2-3), 643-647
Thines, K. R., Abdullah, E. C., Mubarak, N. M., & Ruthiraan, M. (2017). Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renewable and Sustainable Energy Reviews, 67, 257-276
Theydan, S. K., & Ahmed, M. J. (2012). Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis, 97, 116-122
Zeghioud, H., Fryda, L., Djelal, H., Assadi, A., & Kane, A. (2022). A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. Journal of Water Process Engineering, 47, 102801
Reddy, D. H. K., & Lee, S. M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103
Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20, 358-368
Qiu M, Hu B, Chen Z, Yang H, Zhuang L, Wang X (2021) Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar 3(2):117–123
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X (2022) Biochar for the removal of contaminants from soil and water: a review. Biochar 4:19
Selvaraj, R., Pai, S., Vinayagam, R., Varadavenkatesan, T., Kumar, P. S., Duc, P. A., & Rangasamy, G. (2022). A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere, 136331
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70-85
Amabilis-Sosa, L. E., Valenzuela, E. I., Quezada-Renteria, J. A., & Pat-Espadas, A. M. (2022). Biochar-Assisted Bioengineered Strategies for Metal Removal: Mechanisms, Key Considerations, and Perspectives for the Treatment of Solid and Liquid Matrixes. Sustainability, 14(24), 17049
Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77-83
Flesch, F., Berger, P., Robles-Vargas, D., Santos-Medrano, G. E., & Rico-Martínez, R. (2019). Characterization and determination of the toxicological risk of biochar using invertebrate toxicity tests in the state of Aguascalientes, México. Applied Sciences, 9(8), 1706
de Lima, R. O. A., Bazo, A. P., Salvadori, D. M. F., Rech, C. M., de Palma Oliveira, D., & de Aragão Umbuzeiro, G. (2007). Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 626(1-2), 53-60
Zeghioud, H., Nguyen-Tri, P., Khezami, L., Amrane, A., & Assadi, A. A. (2020). Review on discharge Plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. Journal of Water Process Engineering, 38, 101664
Kumar, V., Singh, J., and Chopra, A. K. (2018). Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Int. J. Phytoremediation 20, 507–521. doi: 10.1080/15226514.2017.1393391
Dewage, N. B., Liyanage, A. S., Pittman Jr, C. U., Mohan, D., & Mlsna, T. (2018). Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresource technology, 263, 258-265
Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of environmental management, 197, 732-749
Zhang, Y., Fry, C. G., Pedersen, J. A., & Hamers, R. J. (2017). Dynamics and morphology of nanoparticle-linked polymers elucidated by nuclear magnetic resonance. Analytical chemistry, 89(22), 12399-12407
Luo, K., Pang, Y., Wang, D., Li, X., Wang, L., Lei, M., ... & Yang, Q. (2021). A critical review on the application of biochar in environmental pollution remediation: Role of persistent free radicals (PFRs). Journal of Environmental Sciences, 108, 201-216
Othmani, A., John, J., Rajendran, H., Mansouri, A., Sillanpää, M., & Chellam, P. V. (2021). Biochar and activated carbon derivatives of lignocellulosic fibers towards adsorptive removal of pollutants from aqueous systems: Critical study and future insight. Separation and Purification Technology, 274, 119062 .
Aboudalle, A., Djelal, H., Domergue, L., Fourcade, F., & Amrane, A. (2021). A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole. Journal of Hazardous Materials, 415, 125705
Osagie, C., Othmani, A., Ghosh, S., Malloum, A., Esfahani, Z. K., & Ahmadi, S. (2021). Dyes adsorption from aqueous media through the nanotechnology: A review. Journal of Materials Research and Technology, 14, 2195-2218
Kim, S., Nam, S. N., Jang, A., Jang, M., Park, C. M., Son, A., ... & Yoon, Y. (2022). Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere, 286, 131916
Joseph, B., Kaetzl, K., Hensgen, F., Schäfer, B., & Wachendorf, M. (2020). Sustainability assessment of activated carbon from residual biomass used for micropollutant removal at a full-scale wastewater treatment plant. Environmental Research Letters, 15(6), 064023
Lehmann J, Joseph S (ed) (2009) Biochar for environmental management: science and technology. First published by Earthscan in the UK and USA.pp405
Mandal, S., Sarkar, B., Bolan, N., Novak, J., Ok, Y. S., Van Zwieten, L., ... & Naidu, R. (2016). Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 46(17), 1367-1401
Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570
Zhao, T., & Feng, T. (2016). Application of modified chitosan microspheres for nitrate and phosphate adsorption from aqueous solution. RSC advances, 6(93), 90878-90886
Shaheen SM, El-Naggar A, Wang JX, Hassan NEE, Niazi NK, Wang HL, Tsang DCW, Ok YS, Bolan N, Rinklebe J (2019) Biochar as an (Im)mobilizing agent for the potentially toxic elements in contaminated soils-science direct. Biochar Biomass Waste 14:255–274
Hu BW, Ai YJ, Jin J, Hayat T, Alsaedi A, Zhuang L, Wang XK (2020) Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2:47–64
Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3, 255-281
Taha, S. M., Amer, M. E., Elmarsafy, A. E., & Elkady, M. Y. (2014). Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. Journal of Environmental Chemical Engineering, 2(4), 2013-2025
Zhu DQ, Pignatello JJ (2005) Characterization of aromatic compound sorptive interactions with black carbon (Charcoal) assisted by graphite as a model. Environ Sci Technol 39(7):2033–2041
Tan GC, Xu N, Xu YR, Wang HY, Sun WL (2016) Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Biores Technol 211:727–735.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sadiq Kadhum Lafta Alzurfi, Khitam Jameel Mushtaq

This work is licensed under a Creative Commons Attribution 4.0 International License.
AJB is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the Article, alter and revise the Article, and make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work.