The Protective Effect of Vanadium on Cyclophosphamide-Induced Teratogenesis in Mouse Fetus

Authors

  • Amjed Torki Al-Rudaini
  • Mehri Azadbakht

DOI:

https://doi.org/10.36320/ajb/v8.i1.8027

Keywords:

Cyclophosphamide, Vanadium, Teratogenesis, Fetus, Mice

Abstract

Cyclophosphamide(CP) is a chemotherapeutic and immunosuppressive drug used for treatment of neoplastic and some auto-immune diseases, but it has several important adverse effects and can induce external malformations in the fetus. Different materials can use to avoid or prevent its side effects. Trace elements as an antioxidant can prevent oxidative stress by binding to free radicals and reduce adverse effects of chemotherapy drugs. vanadium is present as an ultratrace element has prophylactic effects on teratogenic effects of CP. The aim of our work was to estimate the vanadium effect on CP-induced macroscopic fetal defects in mice. In this study pregnant NMRI mice were divided into four groups. control group received normal saline, CP group received CP (10 mg/kg on 11th GD), V group received vanadium (4mg/kg on 8th,10th and 12th) and V/CP group CP (10 mg/kg on 11th GD) with vanadium (4mg/kg on 8th,10th and 12th) intraperitoneally. Fetuses were collected on the 19th GD. Then the weight of fetuses, length of crown-rump, limbs, and tail of fetuses were measured. The external teratogenesis were investigated by the stereomicroscope.

Downloads

Download data is not yet available.

References

Wells, P.G.; Bhuller, Y.; Cen, C.S.; Jeng, W.; Kasapinovic, S.; Kennedy, J.C.; Kim, P.M.; Laposa, R.R.; McCallum, G.P.; Nicol, C.J.; Parman, T.; Wiley, M.J. and Wong, A.W. 2005. Molecular and Biochemical Mechanisms in Teratogenesis Involving Reactive Oxygen Species. Toxicology and Applied Pharmacology, 207, 354-366. DOI: https://doi.org/10.1016/j.taap.2005.01.061

Ornoy, A.2007. Embryonic Oxidative Stress as a Mechanism of Teratogenesis with Special Emphasis on Diabetic Embryopathy. Reproductive Toxicology, 24, 31-41. DOI: https://doi.org/10.1016/j.reprotox.2007.04.004

Hales, B.F. 1981. Modification of the Mutagenicity and Teratogenicity of Cyclophosphamide in Rats with Inducers of the Cytochromes P-450. Teratology, 24, 1-11. DOI: https://doi.org/10.1002/tera.1420240102

Pryor, J.L.; Hughes, C.; Foster, W.; Hales, B.F. and Robaire, B. 2000. Critical windows of exposure for children’s health. Environ. Health Persp. (Supple. 3). (108): 491-503. DOI: https://doi.org/10.1289/ehp.00108s3491

Huttunen, K.M.; Mähönen, N.; Raunio, H. and Rautio, J. 2008.Cytochrome P450-activated prodrugs: targeted drug delivery. Curr Med Chem. (15):2346–2365. DOI: https://doi.org/10.2174/092986708785909120

Chabner, B.A.; Ryand, D.P.; Pax-Ares, L; Garcis-Carbonero and Calaresi, P. 2001. Antineoplastic Agents. In Goodman and Gilman’s, The Pharmacological Basis of Therapeutics, 10th ed. J.G. Harnam and L.E. Libmirde, eds NewYork, NY: McGraw Hill. 1389-1459

Zhang, J.; Tian, Q.; Yung, S.; Chuen, S.; Zhou, S.; Duan, W. and Zhu Y. 2005. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metabolism Reviews. (37):611-703. DOI: https://doi.org/10.1080/03602530500364023

Giraud, B.; Hebert, G.; Deroussent, A.; Veal, G.J.; Vassal, G. and Paci, A. 2010. Oxazaphosphorines: new therapeutic strategies for an old class of drugs. Expert Opin Drug Metab Toxicol. (6):919–938. DOI: https://doi.org/10.1517/17425255.2010.487861

Slott, V. L. and Hales, B. F. 1987. Enhancement of the embryotoxicity of acrolein, but not phosphoramide mustard, by glutathione depletion in rat embryo in vitro. Biochem. Pharmacol. (36):2019-2025. DOI: https://doi.org/10.1016/0006-2952(87)90503-X

Senthilkumar, S.; Yogeeta, S.K.; Subashini, R. and Devaki, T. 2006. Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chemico-Biological Interactions.160(3): 252-260. DOI: https://doi.org/10.1016/j.cbi.2006.02.004

Oraby, H.A.S.; Hassan, A. M. and Maaty, N.A.A. 2010. Effect of cyclophosphamide on transcription of SOD1mRNA and GPX1 mRNA in mice liver and brain. tissues. Journal of Applied Biosciences. 29: 1736-1742.

Prakash, S. G. and Singh, S. M. 2007. Fetal Central Nervous System and Thymic Alterations Following Cyclophosphamide Treatment of Pregnant Mice. Int. J. Morphol. 25:775-787. DOI: https://doi.org/10.4067/S0717-95022007000400016

Mahabady, M.K.; Varzi, H.N. and Bakhtiari, E. 2012. The Teratogenicity of Cyclophosphamide on Skeletal System and Neural Tube of Fetal Mice. World Applied Sciences Journal .16 (6): 831-834.

Gerlinger, P. 1964. Action du cyclophosphamide injeste a la meresure la rsalisation de la forme du corps de embryons de Lapin. Compt. Rend. Soc. Biol. 158: 2154-2157.

Gerlinger, P. and Clavert, J. 1965. Anomalies observe chez des Lapins Issue de Meres Traitees au Cyclophosphamide. Copt. Rend. Soc. Biol .159: 1462-1466.

Burstein, H.J.; Gelber, S.; Guadagnoli, E. and Weeks. J.C. 1999. Use of alternative medicine by women with early-stage breast cancer. N. Engl. J. Med. 340 :1733–1739. DOI: https://doi.org/10.1056/NEJM199906033402206

VandeCreek, L.; Rogers, E. and Lester, J. 1999. Use of alternative therapies among breast cancer outpatients compared with the general population. Altern. Ther. Health Med. 5: 71–76.

Desoize, B. 2004. Metals and Metal Compounds in Cancer Treatment. Anticancer Research. 24: 1529-1544.

Evangelou, A.M. 2002. Vanadium in cancer treatment. Crit. Rev. Oncol. Hematol. 42: 249–265. DOI: https://doi.org/10.1016/S1040-8428(01)00221-9

Nechay, B.R.; Nanninga, L.B.; Nechay, P.S.E. 1986. Role of vanadium in biology. Fed Proc. 45:123-132.

Paternain, J. L.; Domingo, J. L.; Gomez, M. Ortega, A. and Corbella. 1990. J. Appl. Toxicol. 10:181-186. DOI: https://doi.org/10.1002/jat.2550100307

Edel, J. and Sabbioni, E. 1989. Vanadium transport across placenta and milk of rats to the fetus and newborn. Biol. Trace Elem. Res. 22:265-275. DOI: https://doi.org/10.1007/BF02916615

Sanchez, D.A.; Ortega, J.; Domingo, L.and Corbella, J. 1990. Developmental Toxicity Evaluation of Orthovanadate in the Mouse. Biol. Trace Elem. Res. 30:219-226. DOI: https://doi.org/10.1007/BF02991416

Tsiani, E. and Fantus, I.G. 1997. Vanadium compounds Biological actions and potential as pharmacological agents, Trends Endocrinol. Metab. 8 :51-58. DOI: https://doi.org/10.1016/S1043-2760(96)00262-7

Goldwaser, I.; Gefel, D.; Gershonov, E.; Fridkin, M. and Shechter, Y. 2000. Insulin-like effects of vanadium: basic and clinical implications. J. Inorg. Biochem. 80: 21-25. DOI: https://doi.org/10.1016/S0162-0134(00)00035-0

Brichard, S.M. and Henquin, J.C. 1995. The role of vanadium in the management of diabetes, Trends Pharmacol. Sci. 16: 265-270. DOI: https://doi.org/10.1016/S0165-6147(00)89043-4

Llobet, J.M.; Colomina, M.T.; Sirvent, J.J.; Domingo, J.L. and Corbella, J. 1993. Reproductive toxicity evaluation of vanadium in male mice. Toxicology. 80: 199-206. DOI: https://doi.org/10.1016/0300-483X(93)90181-Q

Shah, R.M.; Izadnegahdar, M.F. and Henh, B.M. 1996. In vivo/in vitro studies on the effects of cyclophosphamide on growth and differentiation of hamster palate. Anticancer Drugs. 7:204-212. DOI: https://doi.org/10.1097/00001813-199602000-00010

Gibson, J.E. and Becker, B.A. 1986. The Teratogenicity of Cyclophosphamide in Mice. Cancer Res. 28:475-480.

Mitchell, D.C.; Niu, S.L. and Litman, B.J. 2003. Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids. 38: 437-443. DOI: https://doi.org/10.1007/s11745-003-1081-1

Alenzi, F.Q.; El-Bolkiny, Y.S. and Salem, M.L. 2010. Protective effects of Nigella sativa oil and thymoquinone against toxicity induced by the anticancer drug cyclophosphamide. Br J Biomed Sci. 67(1): 20-28. DOI: https://doi.org/10.1080/09674845.2010.11730285

Becker, K. and Schoneich, J. 1982. Expression of genetic damage induced by alkylating agents in germ cells of female mice. Mutation Res./Fundam. Mol. Mech. Mutagenesis. 92: 447-464. DOI: https://doi.org/10.1016/0027-5107(82)90243-3

Mahabady, M. K.; Gholami, M. R.; Najafzadeh Varzi, H.; Zendedel, A. and Doostizadeh, M. 2016. Protective effect of quercetin on skeletal and neural tube teratogenicity induced by cyclophosphamide in rat fetuses. Veterinary Research Forum. 7 (2):133 - 138.

Najafzadeh Varzi, H. and Mahabadi, M. K. 2009. A Comparison study of the effects of Echinacea purpurea ethanolic extract and mesna on cyclophosphamide-induced macroscopic fetal defects in rats. Iran J Basic Med Sci. 12(1): 61-66.

Zhao, H.; Jin, B.; Zhang, X.; Cui, Y.; Sun, D.; Gao, C.; Gu, Y. and Ca, B. 2015. Yangjing Capsule Ameliorates Spermatogenesis in Male Mice Exposed to Cyclophosphamide. Evidence-Based Complementary and Alternative Medicine.1-8. DOI: https://doi.org/10.1155/2015/980583

Xiang, D. G.; Zhang, Y.J.; Gao, J.; Lu, H.; Zhu, S. and Wu, W. 2001. Interlukin–1 receptor antagonist attenuates cyclophosphamide–induced mucositis in a murine model. Cancer Chemother Pharmacol. 67 :1445-1453. DOI: https://doi.org/10.1007/s00280-010-1439-1

Downloads

Published

2016-04-01

How to Cite

Torki Al-Rudaini, A., & Azadbakht, M. (2016). The Protective Effect of Vanadium on Cyclophosphamide-Induced Teratogenesis in Mouse Fetus. Al-Kufa University Journal for Biology, 8(1), 7–14. https://doi.org/10.36320/ajb/v8.i1.8027

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.