Phylogenetic characterization and antifungal activity of recombinant defensin protein from Triticum aestivum

Authors

  • Laith A.H AlObaidi

DOI:

https://doi.org/10.36320/ajb/v8.i3.9306

Abstract

Defensins protein plays an important role in innate immune defense against infectious diseases in animals and plants. In our study and for the first time, common wheat (Triticum aestivum) defensin gene was fully characterized. The protein encodes from a signal peptide region of 25 amino acids. Homology searches showed that T. aestivum defensin have a highest identity (72-64 %) with other defensin selected sequences. A multiple sequence alignment indicates very well highly conserved regions include eight cystiene residues, α-helix, loop, and β-sheet. A phylogenetic analysis of the T. aestivum defensin gene sequence among other plant defensin sequences further confirmed that the T. aestivum sequence is very closely related to Triticum durum defensin sequences, and thus, is likely to have the same expressed structure and function. Moreover, the recombinant defensin protein was expressed in vitro and it show a strong antifungal activity against pathogenic strain Puccinia striiformis. Our study indicate that recombinant defensin protein may be a powerful tool for common wheat treatment.

Downloads

Download data is not yet available.

References

Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research., 17: 33893402. DOI: https://doi.org/10.1093/nar/25.17.3389

Byerlee, D. and Dubin, H.J. (2009) Crop improvement in the CGIAR as a global success story of open access and international collaboration. International Journal of the Commons., 4: 452-480. DOI: https://doi.org/10.18352/ijc.147

CIMMYT. (1996). CIMMYT world wheat facts and trends: understanding global trends in the use of wheat diversity and international flows of wheat genetic resources. Mexico, DF.

Coda, R; Rizzello, C; Nigro, F. and Angelis, M. (2008). Long-Term Fungal Inhibitory Activity of Water-Soluble Extracts of Phaseolus vulgaris cv. Pinto and Sourdough Lactic Acid Bacteria during Bread Storage. Appl. Environ. Microbiol., 74: 7391-7398. DOI: https://doi.org/10.1128/AEM.01420-08

Felsenstein, J. (1996). Inferring phylogenesis from protein sequences by parsimony, distance, and likelihood methods. Methods in Enzymology 266: 418-427. DOI: https://doi.org/10.1016/S0076-6879(96)66026-1

Gachomo, E.W.; Jimenez-Lopez, J.C.; Kayodé, A.P.; Baba-Moussa, L. and Kotchoni, S.O. (2012). Structural characterization of plant defensin protein superfamily. Mol Biol Rep., 39:4461-4469 DOI: https://doi.org/10.1007/s11033-011-1235-y

Ganz, T. and Lehrer, R. (1994). Defensis. Curr Opin Immunol., 6: 584-589. DOI: https://doi.org/10.1016/0952-7915(94)90145-7

Gao, A.G.; Hakimi, S.M.; Mittanck, C.A.; Wu, Y.; Woerner, B.M.; Stark, D.M.; Shah, D.M.; Liang, J and Rommens, C.M. (2000). Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol., 12:1307-1310. DOI: https://doi.org/10.1038/82436

Hellgren, O. and Ekblom R. (2010). Evolution of a cluster of innate immune genes (beta-defensins) along the ancestral lines of chicken and zebra finch. Immunome Res., 6: 3. DOI: https://doi.org/10.1186/1745-7580-6-3

Heung, L.J.; Luberto, C. and Del Poeta, M. (2006). Role of sphingolipids in microbial pathogenesis. Infect Immun., 1: 28-39. DOI: https://doi.org/10.1128/IAI.74.1.28-39.2006

Hiruma, K.; Nishiuchi, T.; Kato, T.; Bednarek, P.; Okuno, T.; Schulze-Lefert, P. and Takano, Y. (2011). Arabidopsis enhanced disease resistance is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J., 67: 980–992. DOI: https://doi.org/10.1111/j.1365-313X.2011.04651.x

Hoffman, J.A. and Hetru, C. (1992). Insect defensins :inducible antibacterial peptides. Immunol Today., 13: 411-415. DOI: https://doi.org/10.1016/0167-5699(92)90092-L

Huang, X. and Madan, A. (1999). CAP3:aDNA sequence assembly program. Genome Research., 9: 868-877. DOI: https://doi.org/10.1101/gr.9.9.868

Jenssen, H.; Hamill, P. and Hancock, R. (2006). Peptide Antimicrobial Agents. Clin. Microbiol. Rev., 19: 491-511. DOI: https://doi.org/10.1128/CMR.00056-05

Jung, S.; Mysliwy, J.; Spudy, B.; Lorenzen, I.; Reiss, K.; Gelhaus, C.; Podschun, R.; Leippe, M. and Grötzinger, J. (2011). Human β-Defensin 2 and β-Defensin 3 Chimeric Peptides Reveal the Structural Basis of the Pathogen Specificity of Their Parent Molecules. Antimicrob. Agents Chemother., 55: 954-960. DOI: https://doi.org/10.1128/AAC.00872-10

Kerkis, I.; Hayashi, M. and Prieto da Silva, A. (2014). “State of the Art in the Studies on Crotamine, a Cell Penetrating Peptide from South American Rattlesnake,”. BioMed Research International., doi:10.1155/2014/675985. DOI: https://doi.org/10.1155/2014/675985

Lehrer, R.J.; Barton, A.D.; Harwig, S.L.; Ganz, T. and Selsted, M.E. (1989). Interaction of human defensins with Escherichia coli, Mechanism of bactericidal activity. J Clin Invest., 84: 553-561. DOI: https://doi.org/10.1172/JCI114198

Li, F.; Feter, M.; Warner, J.M.; Keene, F.R. and Collins, J.G. (2013). Dinuclear polypyridylruthenium(II) complexes: flow cytometry studies of their accumulation in bacteria and the effect on the bacterial membrane. J Antimicrob Chemother. 12: 2825-2833. DOI: https://doi.org/10.1093/jac/dkt279

Lopez, L.; Morales, G.; Ursic, R.; Wolff, M. and Lowenberger, C. (2003). Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of chagas disease. Insect Biochem Mol Biol., 4: 439-447. DOI: https://doi.org/10.1016/S0965-1748(03)00008-0

Notredame, C.; Higgins, D.G. and Heringa, J. (2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology., 302: 205-217. DOI: https://doi.org/10.1006/jmbi.2000.4042

Parashina, E.V.; Serdobinskii, L.A.; Kalle, E.G.; Lavorova, N.V.; Avetisov, V.A.; Lunin, V.G. and Naroditskii, B.S. (2000). Genetic engineering of oilseed rape and tomato plants expressing a radish defensin gene. Rus. J. Plant Physiol., 47: 417-423.

Patterson-Delafield, J.; Szklarek, D.; Martinez, R.J. and Lehrer, R.I. (1981). Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition peptides in mammalian and insect host defense. Curr. Opin. Immunol., 10: 41–44.

Rozen, S. and Skaletsky, H.J. (2000). Bioinformatics Methods and Protocols (Methods in Molecular Biology) Humana Press, Totow, NJ.

Salman, A.; Khan, M. and Hussain, M. (2006). Prediction of yield losses in wheat varieties/lines due to leaf rust in Faisalabad. Pak. J. Phytopathol., 18: 178-182.

Sambrook, J.; Fritsch, E.F. and Maniatis, T. (2001). Molecular Cloning: A Laboratory Manual, pp. 100-110, Cold Spring Harbor Laboratory Press, New York.

Shen, L.; Chen, X.Y.; Zhang, X.; Li, Y.Y.; Fu, C.X. and Qiu, Y.X. (2004). "Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cDNA PCR-RFLPs: inference of glacial refugia". Heredity., 94 : 396–401. DOI: https://doi.org/10.1038/sj.hdy.6800616

Shewry, P. (2009). Wheat. J. Exp. Bot. 60: 1537-1553. DOI: https://doi.org/10.1093/jxb/erp058

Tamura, K.; Dudley, J.; Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary & Genetics Analysis. Molecular Biology and Evolution., 24: 1596-1599. DOI: https://doi.org/10.1093/molbev/msm092

Tran, D.; Tran, P.; Roberts, K.; Osapay, G.; Schaal, J.; Ouellette, A. and Selsted, M.E. (2008). "Microbicidal properties and cytocidal selectivity of rhesus macaque theta defensins". Antimicrob. Agents Chemother., 52: 944–953. DOI: https://doi.org/10.1128/AAC.01090-07

Wrigley, C.W.; Corke, H. and Walker, C.E. (2004). Encyclopedia of Grain Science., Elsevier, Oxford.

Yahia, M. (2011). Wheat fungus threatens crops across Middle East doi:10.1038/n middle east. DOI: https://doi.org/10.1038/nmiddleeast.2011.49

Downloads

Published

2016-11-03

How to Cite

A.H AlObaidi, L. (2016). Phylogenetic characterization and antifungal activity of recombinant defensin protein from Triticum aestivum. Al-Kufa University Journal for Biology, 8(3), 27–38. https://doi.org/10.36320/ajb/v8.i3.9306