Hot air, Temperature, Exhauster, Biomass, Modules, Combustion


Thermoelectric generators are solid-state devices that convert heat into electricity using the Seebeck effect, when there is a temperature difference across a thermoelectric material. This research designed an experimentally tested a thermoelectric hot air generator using sixteen SP1848-27145 modules in two parallel strings. The system consists of a biomass combustion chamber, hot air exhauster, hot and cold side heat exchangers. Voltage, current and temperatures in the combustion chamber, hot air heat exhauster, hot side heat exchanger and cold side heat sink were measured. The hot air exhauster, hot side heat sink and cold side   maximum temperatures are 178.3°C, 69.2°C and 44.5°C respectively yielding an open circuit voltage of 64 V and current of 1.99 A in the course of the experiment. The thermal performance of the designed hot air exhauster, hot side heat exchanger and cold side heat were simulated using ANSYS Fluent, for pictorial representation of their temperature contours.


Download data is not yet available.


Abubakar S. U., Jumaat S. A., Akmal J. M. Jamaludin W. A. W. (2021). ‘Analysis of the Performance of Thermoelectric Generators for Ambient Energy Generation through ANSYS Software’. Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management Singapore, pp. 3460-3472.

Binu D., Gayathri R., Anand V., Lavanya R., Kanmani R, (2017). ‘Thermoelectric Power Generation Using Solar Energy’. International Journal for Scientific Research & Development, 5(3), pp. 2321-0613.

Bridge B. A., Adhikari D., Fontenla M, (2016). ‘Electricity, income, and quality of life’. The Social Science Journal, 53, pp 33 -39.

Çengel, Y. A., Cimbala, J. M., Ghajar, A. J, (2022). Fundamentals of thermal-fluid sciences, 6th Edition, New York, NY: McGraw Hill, chapter 22, pp. 819–839.

Mjallal I., Farhat H., Hammoud M., Ali S., Shaer A.A., Assi A, (2018). ‘Cooling Performance of Heat Sinks Used in Electronic Devices’. MATEC Web of Conferences 171, 02003, pp 1 - 4.

Nimankar S. J., Dahake S. K., (2016). ‘Review of Heat Exchangers’. Global Journal of Engineering Science and Researches, 3(12), pp 81 - 92.

Nuwayhid R. Y., Shihadeh A., Ghaddar N. (2004). ‘Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling’. Energy Conversion and Management, 46, pp 1631 - 1643.

Ong K. S. (2016). ‘Review of solar, heat pipe and thermoelectric hybrid systems of power generation and heating’. International Journal of Low-Carbon Technologies, 11(4), pp. 460-465.

Reddy M. C. S. (2015). ‘Thermal Analysis of a Heat Sink for Electronics Cooling’. International Journal of Mechanical Engineering and Technology, 6(11), pp 145 - 153.

Remeli M. F., Kiatbodin L., Singh B., Verojporn K., Date A., Akbarzadeh A. (2015). ‘Power generation from waste heat using Heat Pipe and Thermoelectric Generator’. Energy Procedia 75, 7th International Conference on Applied Energy, pp. 645 – 650.

Reyes-León A., Velázquez M. T., Quinto-Diez P., Sánchez-Silva F., Abugaber-Francis J., Reséndiz-Rosas C. (2011). ‘The Design of Heat Exchangers’. Engineering, 3(9), pp. 911–920.

Saraswathi K. (2020). ‘A Review Paper on Electricity Generation from Solar Energy’. International Journal of Scientific Development and Research, 5(4), pp. 279 -284.

Stern D. I., Bruke P. J., Bruns, S. B. (2019). The Impact of Electricity on Economic Development: A Macroeconomic Perspective. Energy and Economic Growth. Applied Research Programme, Paper No: 1.1, pp 1- 42.

Shaikh M. R. S., Waghmare S. B., Labada S. S., Fuke P. J., Tekale A. (2017). ‘A Review Paper on Electricity Generation from Solar Energy’. International Journal for Research in Applied Science & Engineering Technology, 5(9), pp. 1884 - 1889.




How to Cite

Onoroh, Francis, et al. “PERFORMANCE EVALUATION OF HOT AIR THERMOELECTRIC GENERATOR USING BIOMASS ENERGY SOURCE”. Kufa Journal of Engineering, vol. 14, no. 4, Oct. 2023, pp. 69-85, doi:10.30572/2018/KJE/140406.