Physiological action of vitamin D3 in health and disease

Authors

  • Suaad Mohammad Joda AL-Hadrawy Department of Biology, Faculty of Sciences, University of kufa, Iraq

DOI:

https://doi.org/10.36320/ajb/v14.i1.11748

Keywords:

vitamin D3, COVID-19, VDR, uv

Abstract

         Vitamin D is the common molecules for every steroid that has the biological effects of cholecalciferol. Vitamin D can be synthesized in the mammalian skin after exposed to ultraviolet (UV) waves and this process occur endogenously. Amongst diverse Vitamins, VitD has powerful effects on the immune system. As major components of the diet, vitamins have essential effects on the innate and acquired immune system. The active form of VitD is calcitriol (1,25(OH)2VitD3). Calcitriol (1,25(OH)2VitD3) is the active form of VitD. Calcitriol regulates antimicrobial peptides productions, comprising defensin and cathelicidin, that controller the natural intestine microbiota floor and supports intestinal barriers. VitD in controlling the immune response in infectious and autoimmune diseases. There is a theory that VitD complements could be beneficial for treatment of COVID-19. Vit D has an important anti-inflammatory function on the immune system by reducing the production of pro-inflammatory cytokines and increasing anti-inflammatory cytokines in immune cells. Also, vitamin D deficiency is closely related to chronic diseases such as osteoporosis,  type 1 and type 2 diabetes, hypertension, cardiovascular disease and cancer. In addition, recently it was revealed that vitamin D receptors (VDR) are expressed in many organs such as the testes, and vitamin D may be a adjustable regulator of reproductive function and fertility.

Downloads

Download data is not yet available.

References

Abbas, S. et al. (2008) ‘Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer—results of a large case–control study’, Carcinogenesis, 29(1), pp. 93–99. DOI: https://doi.org/10.1093/carcin/bgm240

Abu‐Amer, Y. and Bar‐Shavit, Z. (1994) ‘Regulation of TNF‐α release from bone marrow–derived macrophages by vitamin D’, Journal of cellular biochemistry, 55(4), pp. 435–444. DOI: https://doi.org/10.1002/jcb.240550404

Bischoff-Ferrari, H. A. et al. (2005) ‘Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials’, Jama, 293(18), pp. 2257–2264. DOI: https://doi.org/10.1001/jama.293.18.2257

Blomberg Jensen, M. et al. (2010) ‘Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract’, Human reproduction, 25(5), pp. 1303–1311. DOI: https://doi.org/10.1093/humrep/deq024

Blomberg Jensen, M. et al. (2011) ‘Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa’, Human reproduction, 26(6), pp. 1307–1317. DOI: https://doi.org/10.1093/humrep/der059

Blum, M. et al. (2008) ‘Vitamin D 3 in fat tissue’, Endocrine, 33(1), pp. 90–94. DOI: https://doi.org/10.1007/s12020-008-9051-4

Clark, A. and Mach, N. (2016) ‘Role of vitamin D in the hygiene hypothesis: the interplay between vitamin D, vitamin D receptors, gut microbiota, and immune response’, Frontiers in immunology, 7, p. 627. DOI: https://doi.org/10.3389/fimmu.2016.00627

Combs, G. (2012) The Vitamins, The Vitamins. doi: 10.1016/C2009-0-63016-6. DOI: https://doi.org/10.1016/B978-0-12-381980-2.00010-4

Elmaghraby, A. M., RafatAboseta, M. and Shalaby, M. N. (2019) ‘Some Biochemical Variables and its Relation to Muscular Fatigue in 800 m Freestyle Swimmers’, International Journal of Psychosocial Rehabilitation, 23(4), pp. 2084–2093.

Forman, J. P., Curhan, G. C. and Taylor, E. N. (2008) ‘Plasma 25-hydroxyvitamin D levels and risk of incident hypertension among young women’, Hypertension, 52(5), pp. 828–832. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.108.117630

Giovannucci, E. et al. (2008) ‘25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study’, Archives of internal medicine, 168(11), pp. 1174–1180. DOI: https://doi.org/10.1001/archinte.168.11.1174

Gombart, A. F. (2009) ‘The vitamin D–antimicrobial peptide pathway and its role in protection against infection’, Future microbiology, 4(9), pp. 1151–1165. DOI: https://doi.org/10.2217/fmb.09.87

Heaney, R. P. (1997) ‘Vitamin D: role in the calcium economy.’, Vitamin D., pp. 485–497.

Heaney, R. P. (2008) ‘Vitamin D in health and disease’, Clinical Journal of the American Society of Nephrology, 3(5), pp. 1535–1541. doi: 10.2215/CJN.01160308. DOI: https://doi.org/10.2215/CJN.01160308

Hirai, T. et al. (2009) ‘Effect of 1, 25-dihydroxyvitamin d on testicular morphology and gene expression in experimental cryptorchid mouse: testis specific cDNA microarray analysis and potential implication in male infertility’, The Journal of urology, 181(3), pp. 1487–1492. DOI: https://doi.org/10.1016/j.juro.2008.11.007

Holick, M. F. (1995) ‘Environmental factors that influence the cutaneous production of vitamin D’, The American journal of clinical nutrition, 61(3), pp. 638S-645S. DOI: https://doi.org/10.1093/ajcn/61.3.638S

Holick, M. F. (2004) ‘Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis’, The American journal of clinical nutrition, 79(3), pp. 362–371. DOI: https://doi.org/10.1093/ajcn/79.3.362

Houghton, L. A. and Vieth, R. (2006) ‘The case against ergocalciferol (vitamin D2) as a vitamin supplement’, The American journal of clinical nutrition, 84(4), pp. 694–697. DOI: https://doi.org/10.1093/ajcn/84.4.694

Hyppönen, E. et al. (2001) ‘Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study’, The Lancet, 358(9292), pp. 1500–1503. DOI: https://doi.org/10.1016/S0140-6736(01)06580-1

Jensen, M. B. (2012) ‘Vitamin D metabolism, sex hormones, and male reproductive function’, Reproduction, 144(2), pp. 135–152. DOI: https://doi.org/10.1530/REP-12-0064

Jensen, M. B. et al. (2012) ‘Vitamin D metabolism and effects on pluripotency genes and cell differentiation in testicular germ cell tumors in vitro and in vivo’, Neoplasia, 14(10), pp. 952-IN18. DOI: https://doi.org/10.1593/neo.121164

Jensen, M. B. et al. (2013) ‘Characterization of the testicular, epididymal and endocrine phenotypes in the Leuven Vdr-deficient mouse model: targeting estrogen signalling’, Molecular and cellular endocrinology, 377(1–2), pp. 93–102. DOI: https://doi.org/10.1016/j.mce.2013.06.036

Johnson, L. E. and DeLuca, H. F. (2001) ‘Vitamin D receptor null mutant mice fed high levels of calcium are fertile’, The Journal of nutrition, 131(6), pp. 1787–1791. DOI: https://doi.org/10.1093/jn/131.6.1787

Jones, G. (2008) ‘Pharmacokinetics of vitamin D toxicity’, The American journal of clinical nutrition, 88(2), pp. 582S-586S. DOI: https://doi.org/10.1093/ajcn/88.2.582S

Kang, S. W. et al. (2012) ‘1, 25-Dihyroxyvitamin D3 promotes FOXP3 expression via binding to vitamin D response elements in its conserved noncoding sequence region’, The Journal of Immunology, 188(11), pp. 5276–5282. DOI: https://doi.org/10.4049/jimmunol.1101211

Khor, L. Y. et al. (2007) ‘Bcl-2 and Bax expression predict prostate cancer outcome in men treated with androgen deprivation and radiotherapy on radiation therapy oncology group protocol 92-02’, Clinical cancer research, 13(12), pp. 3585–3590. DOI: https://doi.org/10.1158/1078-0432.CCR-06-2972

King, E. (2020) ‘The Role of Vitamin D deficiency in COVID-19 related deaths in BAME, Obese and Other High-risk Categories’. DOI: https://doi.org/10.31232/osf.io/73whx

Kinuta, K. et al. (2000) ‘Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads’, Endocrinology, 141(4), pp. 1317–1324. DOI: https://doi.org/10.1210/endo.141.4.7403

Lappe, J. M. et al. (2007) ‘Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial’, The American journal of clinical nutrition, 85(6), pp. 1586–1591. DOI: https://doi.org/10.1093/ajcn/85.6.1586

Leffa, D. T. et al. (2019) ‘Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder’, Neuroscience & Biobehavioral Reviews, 100, pp. 166–179. DOI: https://doi.org/10.1016/j.neubiorev.2019.02.019

Mastaglia, S. R. et al. (2006) ‘Vitamin D 2 dose required to rapidly increase 25OHD levels in osteoporotic women’, European journal of clinical nutrition, 60(5), pp. 681–687. DOI: https://doi.org/10.1038/sj.ejcn.1602369

Mihajlovic, M. et al. (2017) ‘Role of vitamin D in maintaining renal epithelial barrier function in uremic conditions’, International journal of molecular sciences, 18(12), p. 2531. DOI: https://doi.org/10.3390/ijms18122531

Min, C.-K. et al. (2016) ‘Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity’, Scientific reports, 6(1), pp. 1–12. DOI: https://doi.org/10.1038/srep25359

Musavi, H. et al. (2020) ‘The benefits of Vitamin D in the COVID-19 pandemic: biochemical and immunological mechanisms’, Archives of Physiology and Biochemistry, 0(0), pp. 1–9. doi: 10.1080/13813455.2020.1826530. DOI: https://doi.org/10.1080/13813455.2020.1826530

Pepper, K. J. et al. (2009) ‘Evaluation of vitamin D repletion regimens to correct vitamin D status in adults’, Endocrine Practice, 15(2), pp. 95–103. DOI: https://doi.org/10.4158/EP.15.2.95

Scragg, R., Sowers, M. and Bell, C. (2004) ‘Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey’, Diabetes care, 27(12), pp. 2813–2818. DOI: https://doi.org/10.2337/diacare.27.12.2813

Sun, W. et al. (2015) ‘Active vitamin d deficiency mediated by extracellular calcium and phosphorus results in male infertility in young mice’, American Journal of Physiology - Endocrinology and Metabolism, 308(1), pp. E51–E60. doi: 10.1152/ajpendo.00076.2014. DOI: https://doi.org/10.1152/ajpendo.00076.2014

Topilski, I. et al. (2004) ‘The anti‐inflammatory effects of 1, 25‐dihydroxyvitamin D3 on Th2 cells in vivo are due in part to the control of integrin‐mediated T lymphocyte homing’, European journal of immunology, 34(4), pp. 1068–1076. DOI: https://doi.org/10.1002/eji.200324532

Tsiaras, W. G. and Weinstock, M. A. (2011) ‘Factors influencing vitamin d status’, Acta Dermato-Venereologica, 91(2), pp. 115–124. doi: 10.2340/00015555-0980. DOI: https://doi.org/10.2340/00015555-0980

Vieth, R. (1999) ‘Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety’, The American journal of clinical nutrition, 69(5), pp. 842–856. DOI: https://doi.org/10.1093/ajcn/69.5.842

Wang, T.-T. et al. (2004) ‘Cutting edge: 1, 25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression’, The Journal of Immunology, 173(5), pp. 2909–2912. DOI: https://doi.org/10.4049/jimmunol.173.5.2909

Wang, T. J. et al. (2008) ‘Vitamin D deficiency and risk of cardiovascular disease’, Circulation, 117(4), pp. 503–511. DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.706127

Wolf, G. (2004) ‘The discovery of vitamin D: the contribution of Adolf Windaus’, The Journal of nutrition, 134(6), pp. 1299–1302. DOI: https://doi.org/10.1093/jn/134.6.1299

Wu, D. et al. (2019) ‘Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance’, Frontiers in immunology, 9, p. 3160. DOI: https://doi.org/10.3389/fimmu.2018.03160

Xu, T. et al. (2020) ‘Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19’, International Journal of Infectious Diseases, 94, pp. 68–71. DOI: https://doi.org/10.1016/j.ijid.2020.03.022

Xu, Z. et al. (2020) ‘Pathological findings of COVID-19 associated with acute respiratory distress syndrome’, The Lancet respiratory medicine, 8(4), pp. 420–422. DOI: https://doi.org/10.1016/S2213-2600(20)30076-X

Yin, Z. et al. (2011) ‘Vitamin D enhances corneal epithelial barrier function’, Investigative ophthalmology & visual science, 52(10), pp. 7359–7364. DOI: https://doi.org/10.1167/iovs.11-7605

Downloads

Published

2022-04-29

How to Cite

Mohammad Joda AL-Hadrawy, S. (2022). Physiological action of vitamin D3 in health and disease. Al-Kufa University Journal for Biology, 14(1), 55–64. https://doi.org/10.36320/ajb/v14.i1.11748