Production of Bacterial Cellulose by using Acetobacter xylinum Isolated from Local Vinegar

Authors

  • Rozhgar Kamal Mohammed Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University, Erbil, Kurdistan Region, Iraq.
  • Zainab M. AlZubaidy College of Science, Diyala University, Iraq

DOI:

https://doi.org/10.36320/ajb/v12.i2.11780

Keywords:

Acetobacter xylinum, Bacterial Cellulose, Vinegar, GYC, Physical properties

Abstract

In this present research, acetic acid bacteria were isolated from local vinegar samples produced from fermented apple, date and grape; from all (26) vinegar samples; twenty-one isolates of the bacteria were obtained as a dense and smooth colonies with creamy colour on the surface of HS-agar medium, four isolates were identified as Acetobacter xylinum by followed many physiological and biochemical tests, the isolates were gram negative, oxidase negative and catalase positive, the isolates showed positive growth at (25, 30 and 40)°C and furthermore at pH 7.0 and 4.5, but there was no growth at (45°C), pH (2.5 and 8.5). All isolated bacteria were unable to liquefy gelatin. Four isolates were capable to ferment glucose, xylose, galactose, mannose and unable to ferment lactose, mannitol and maltose.The isolates BS2, BS3, BS8 and BS20 had ability for bacterial cellulose production. The percentage of dry weight of cellulose ranged between (2.163 – 7.234)%. Since BS2 showed the best productivity, which had the maximum cellulose production (7.234g/L) was obtained after incubation time of 7 days with Hestrin and Hchramm (HS) media in static fermentation. The isolates (BS2, BS3, BS8 and BS20) were examined for bacterial cellulose production in HS broth medium. The dry weight of crude cellulose produced by each isolates was measured and ranged from (0.36-0.42) gm. and the pH value of bacterial cellulose were (6.2-6.9), approximately equal and nearly to the neutral values with comparison with plant cellulose. The thickness of bacterial cellulose membrane is a key parameter in preparing film, the initial thickness of the wet BC membrane was measured as 32 micrometers and after drying the computed thickness of BC membrane decreased to 0.4 µm. The average tensile strength value and the average elongation at break value of the dried BC films were 34.5 MPa and 5.2% respectively.

Downloads

Download data is not yet available.

References

Auta, R., Adamus, G., Kwiecien, M., Radecka, I. and Hooley, P., 2017. Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. African Journal of Biotechnology, 16(10), pp.470-482.

Aydin, Y.A. and Aksoy, N.D., 2009. Isolation of cellulose producing bacteria from wastes of vinegar fermentation. In Proceedings of the world congress on engineering and computer science Vol. 1, pp. 20-22.

Aydin, Y.A. and Aksoy, N.D., 2010, June. Utilization of vinegar for isolation of cellulose producing acetic acid bacteria. In AIP Conference Proceedings. Vol. 1247, No. 1, pp. 340-348. DOI: https://doi.org/10.1063/1.3460242

Azubuike CP and Okhamafe AO., 2012. Physiochemical, spectoscopic and thermal properties of microcrystalline cellulose derived from corn cobs. International Journal of Recycling of Organic Waste in Agriculture, 1(1): 1-7. DOI: https://doi.org/10.1186/2251-7715-1-9

Barbara SŚ, Sebastian P, and Dariusz D., (2008). Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres and Textiles in Eastern Europe, 4(69): 108-111.

Battad-Bernardo, E., McCrindle, S.L., Couperwhite, I. and Neilan, B.A., 2004. Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey. FEMS microbiology letters, 231(2), pp.253-260. DOI: https://doi.org/10.1016/S0378-1097(04)00007-2

Bielecki, S., Krystynowicz, A., Turkiewicz, M. and Kalinowska, H., 2005. Bacterial cellulose. Biopolymers Online: Biology, Chemistry, Biotechnology Applications, 5.

Brenner, D.J., Krieg, N.R. and Staley, J.T., 2005. Bergey’s Manual of Systematic Bacteriology, Volume 2: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-and Gamma proteobacteria. DOI: https://doi.org/10.1007/0-387-29298-5

British Pharmacopoeia, 2004. Stationary office. The Department of Health, pp 405–407

Brown, R.M., Willison, J.H. and Richardson, C.L., 1976. Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proceedings of the National Academy of Sciences, 73(12), pp.4565-4569. DOI: https://doi.org/10.1073/pnas.73.12.4565

Cannon, R.E. and Anderson, S.M., 1991. Biogenesis of bacterial cellulose. Critical reviews in microbiology, 17(6), pp.435-447. DOI: https://doi.org/10.3109/10408419109115207

Chawla, P.R., Bajaj, I.B., Survase, S.A. and Singhal, R.S., 2009. Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology, 47(2).

Cheng, Q., Wang, J., McNeel, J. and Jacobson, P., 2010. Water retention value measurements of cellulosic materials using a centrifuge technique. BioResources, 5(3), pp.1945-1954..

Czaja, W., Krystynowicz, A., Bielecki, S. and Brown J.R.M., 2006. Microbial cellulose—the natural power to heal wounds. Biomaterials, 27(2), pp.145-151. DOI: https://doi.org/10.1016/j.biomaterials.2005.07.035

Dahman, Y., Jayasuriya, K.E. and Kalis, M., 2010. Potential of biocellulose nanofibers production from agricultural renewable resources: preliminary study. Applied biochemistry and biotechnology, 162(6), pp.1647-1659. DOI: https://doi.org/10.1007/s12010-010-8946-8

Dellaglio, F., Cleenwerck, I., Felis, G.E., Engelbeen, K., Janssens, D. and Marzotto, M., 2005. Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. International Journal of Systematic and Evolutionary Microbiology, 55(6), pp.2365-2370. DOI: https://doi.org/10.1099/ijs.0.63301-0

Donini, Í.A., De Salvi, D.T., Fukumoto, F.K., Lustri, W.R., Barud, H.S., Marchetto, R., Messaddeq, Y. and Ribeiro, S.J., 2010. Biossíntese e recentes avanços na produção de celulose bacteriana. Eclética Química, 35(4), pp.165-178. DOI: https://doi.org/10.1590/S0100-46702010000400021

Drysdale, G.S. and Fleet, G.H., 1988. Acetic acid bacteria in winemaking: a review. American Journal of Enology and Viticulture, 39(2), pp.143-154. DOI: https://doi.org/10.5344/ajev.1988.39.2.143

Esa, F., Tasirin, S.M. and Rahman, N.A., 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, pp.113-119. DOI: https://doi.org/10.1016/j.aaspro.2014.11.017

Gea, S., Reynolds, C.T., Roohpour, N., Wirjosentono, B., Soykeabkaew, N., Bilotti, E. and Peijs, T., 2011. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresource technology, 102(19), pp.9105-9110. DOI: https://doi.org/10.1016/j.biortech.2011.04.077

Goh WN, Rosma A, Kaur B, Fazilah A, Karim AA, and Bhat, R., 2012. Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. International Food Research Journal, 19(1): 153-158.

Gromovykh, T.I., Sadykova, V.S., Lutcenko, S.V., Dmitrenok, A.S., Feldman, N.B., Danilchuk, T.N. and Kashirin, V.V., 2017. Bacterial cellulose synthesized by Gluconacetobacter hansenii for medical applications. Applied biochemistry and microbiology, 53(1), pp.60-67. DOI: https://doi.org/10.1134/S0003683817010094

Gullo, M., Caggia, C., De Vero, L. and Giudici, P., 2006. Characterization of acetic acid bacteria in “traditional balsamic vinegar”. International journal of food microbiology, 106(2), pp.209-212. DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.06.024

Halib N, Amin MC and Ahmad I (2012). Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malaysiana 41(2): 205-211.

Hassan, E.A., Abdelhady, H.M., El-Salam, S.S.A. and Abdullah, S.M., 2015. The characterization of bacterial cellulose produced by Acetobacter xylinum and Komgataeibacter saccharovorans under optimized fermentation conditions. Brit. Microbiol. Res. J, 9, pp.1-13. DOI: https://doi.org/10.9734/BMRJ/2015/18223

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T., 1994. Bergey's Manual of Determinative Bacteriology. 9th. Willaims and Willkins, Baltimore, USA.

Kadere, T.T., Miyamotoo, T., Oniango, R.K., Kutima, P.M. and Njoroge, S.M., 2008. Isolation and identification of the genera Acetobacter and Gluconobacter in coconut toddy (mnazi). African Journal of Biotechnology, 7(16).

Kaur, M., Oberoi, D.P.S., Sogi, D.S. and Gill, B.S., 2011. Physicochemical, morphological and pasting properties of acid treated starches from different botanical sources. Journal of food science and technology, 48(4), pp.460-465. DOI: https://doi.org/10.1007/s13197-010-0126-x

Keshk, S.M.A.S., 2006. Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme and Microbial Technology, 40(1), pp.9-12. DOI: https://doi.org/10.1016/j.enzmictec.2006.07.038

Klawpiyapamornkun, T., Bovonsombut, S. and Bovonsombut, S., 2015. Isolation and Characterization of Acetic acid Bacteria from Fruits and Fermented fruit juices for Vinegar Production. Food and Applied Bioscience Journal, 3(1), pp.30-38.

Klawpiyapamornkun, T., Bovonsombut, S. and Bovonsombut, S., 2015. Isolation and Characterization of Acetic acid Bacteria from Fruits and Fermented fruit juices for Vinegar Production. Food and Applied Bioscience Journal, 3(1), pp.30-38.

Kojima, Y., Tonouchi, N., Tsuchida, T., Yoshinaga, F. and Yamada, Y., 1998. The characterization of acetic acid bacteria efficiently producing bacterial cellulose from sucrose: The proposal of Acetobacter xylinum subsp. nonacetoxidans subsp. nov. Bioscience, biotechnology, and biochemistry, 62(1), pp.185-187. DOI: https://doi.org/10.1271/bbb.62.185

Kowser, J., Aziz, M.G. and Uddin, M.B., 2015. Isolation and characterization of Acetobacter aceti from rotten papaya. Journal of the Bangladesh Agricultural University, 13(2), pp.299-306. DOI: https://doi.org/10.3329/jbau.v13i2.28802

Kralisch, D., Hessler, N., Klemm, D., Erdmann, R. and Schmidt, W., 2010. White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnology and bioengineering, 105(4), pp.740-747. DOI: https://doi.org/10.1002/bit.22579

Lee, K.Y., Buldum, G., Mantalaris, A. and Bismarck, A., 2014. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular bioscience, 14(1), pp.10-32. DOI: https://doi.org/10.1002/mabi.201300298

Lina, F., Yue, Z., Jin, Z. and Guang, Y., 2011. Bacterial cellulose for skin repair materials. Open access peer-reviewed chapter In Biomedical Engineering-Frontiers and Challenges. Intech, Edited by Reza Fazel-Rezai,. ISBN: 978-953-307-309-5, DOI: 10.5772/24323 DOI: https://doi.org/10.5772/24323

Lisdiyanti, P., Katsura, K., Potacharoen, W., Navarro, R.R., Yamada, Y., Uchimura, T. and Komagata, K., 2003. Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol Cult Coll, 19(2), pp.91-99.

Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. and Komagata, K., 2001. Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. The Journal of general and applied microbiology, 47(3), pp.119-131. DOI: https://doi.org/10.2323/jgam.47.119

Maal, K.B., Shafiei, R. and Kabiri, N., 2010. Production of apricot vinegar using an isolated Acetobacter strain from Iranian apricot. World Acad Sci Eng Technol, 4, pp.162-4.

Mantanis, G.I., Young, R.A. and Rowell, R.M., 1995. Swelling of compressed cellulose fiber webs in organic liquids. Cellulose, 2(1), pp.1-22.

Mehta, K., Pfeffer, S. and Brown, R.M., 2015. Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose, 22(1), pp.119-137. DOI: https://doi.org/10.1007/s10570-014-0521-y

Mohammadkazemi, F., Doosthoseini, K. and Azin, M., 2015. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734). Cellul. Chem. Technol, 49(5-6), pp.455-462.

Moryadee, A. and Pathom-Aree, W., 2008. Isolation of thermotolerant acetic acid bacteria from fruits for vinegar production. Research Journal of Microbiology, 3(3), pp.209-212. DOI: https://doi.org/10.3923/jm.2008.209.212

Mounir, M., Shafiei, R., Zarmehrkhorshid, R., Hamouda, A., Thonart, P., Delvigne, F. and Alaoui, M.I., 2016. Optimization of biomass production of Acetobacter pasteurianus KU710511 as a potential starter for fruit vinegar production. African Journal of Biotechnology, 15(27), pp.1429-1441. DOI: https://doi.org/10.5897/AJB2016.15323

Mukadam, T.A., Punjabi, K., Deshpande, S.D., Vaidya, S.P. and Chowdhary, A.S., 2016. Isolation and characterization of bacteria and yeast from Kombucha tea. International Journal of Current Microbiology and Applied Sciences, 5(6), pp.32-41. DOI: https://doi.org/10.20546/ijcmas.2016.506.004

Nogi, M. and Yano, H., 2008. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Advanced materials, 20(10), pp.1849-1852. DOI: https://doi.org/10.1002/adma.200702559

Pecoraro, É., Manzani, D., Messaddeq, Y. and Ribeiro, S.J.L., 2008. Bacterial cellulose from Gluconacetobacter xylinus: preparation, properties and applications. Monomers, polymers and composites from renewable resources. Belgacem M. N., London, 17, pp.369-383. DOI: https://doi.org/10.1016/B978-0-08-045316-3.00017-X

Phong, H.X., Le Thi Lin, N.N.T., Long, B.H.D. and Dung, N.T.P., 2017. Investigating the Conditions for Nata-de-Coco Production by Newly Isolated Acetobacter sp. American Journal of Food Science and Nutrition, 4(1), pp.1-6.

Rani, M.U., Udayasankar, K. and Appaiah, K.A., 2011. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. Journal of applied polymer science, 120(5), pp.2835-2841. DOI: https://doi.org/10.1002/app.33307

Robertson, A.A., 1964. Cellulose-liquid interactions. Pulp and paper magazine of Canada, pp.171-178.

Santos, S.M., Carbajo, J.M., Quintana, E., Ibarra, D., Gomez, N., Ladero, M., Eugenio, M.E. and Villar, J.C., 2015. Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydrate polymers, 116, pp.173-181. DOI: https://doi.org/10.1016/j.carbpol.2014.03.064

Schramm, M. and Hestrin, S., 1954. Synthesis of cellulose by Acetobacter xylinum. 1. Micromethod for the determination of celluloses. Biochemical Journal, 56(1), p.163. DOI: https://doi.org/10.1042/bj0560163

Segal, L.G.J.M.A., Creely, J.J., Martin Jr, A.E. and Conrad, C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal, 29(10), pp.786-794. DOI: https://doi.org/10.1177/004051755902901003

Shaharuddin, S. and Muhamad, I.I., 2015. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: Enhancement of survivability and thermotolerance. Carbohydrate polymers, 119, pp.173-181. DOI: https://doi.org/10.1016/j.carbpol.2014.11.045

Sharafi, S.M., Rasooli, I. and Beheshti-Maal, K., 2010. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods. Iranian Journal of Microbiology, 2(1), p.38.

Shezad, O., Khan, S., Khan, T. and Park, J.K., 2010. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydrate Polymers, 82(1), pp.173-180. DOI: https://doi.org/10.1016/j.carbpol.2010.04.052

Singh, R., Mathur, A., Goswami, N. and Mathur, G., 2016. Effect of carbon sources on physicochemical properties of bacterial cellulose produced from Gluconacetobacter xylinus MTCC 7795. e-Polymers, 16(4), pp.331-336. DOI: https://doi.org/10.1515/epoly-2016-0047

Sokollek, S.J., Hertel, C. and Hammes, W.P., 1998. Cultivation and preservation of vinegar bacteria. Journal of Biotechnology, 60(3), pp.195-206. DOI: https://doi.org/10.1016/S0168-1656(98)00014-5

Son, C.J., Chung, S.Y., Lee, J.E. and Kim, S.J., 2002. Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. Journal of microbiology and biotechnology, 12(5), pp.722-728.

Son, H.J., Heo, M.S., Kim, Y.G. and Lee, S.J., 2001. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter. Biotechnology and Applied Biochemistry, 33(1), pp.1-5. DOI: https://doi.org/10.1042/BA20000065

Tang, W., Jia, S., Jia, Y. and Yang, H., 2010. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World Journal of Microbiology and Biotechnology, 26(1), p.125. DOI: https://doi.org/10.1007/s11274-009-0151-y

Tse, M.L.V., Chung, K.M., Dong, L., Thomas, B.K., Fu, L.B., Cheng, K.C.D., Lu, C. and Tam, H.Y., 2010. Observation of symmetrical reflection sidebands in a silica suspended-core fiber Bragg grating. Optics express, 18(16), pp.17373-17381. DOI: https://doi.org/10.1364/OE.18.017373

United States Pharmacopaea , 2004. National Formulary 22, vol 27, pp 2845–2846.

Weber, C.J., Haugaard, V., Festersen, R. and Bertelsen, G., 2002. Production and applications of biobased packaging materials for the food industry. Food Additives and Contaminants, 19(S1), pp.172-177. DOI: https://doi.org/10.1080/02652030110087483

Wei, B., Yang, G. and Hong, F., 2011. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers, 84(1), pp.533-538. DOI: https://doi.org/10.1016/j.carbpol.2010.12.017

White, D.G. and Brown J.R.M., 1989. Prospects for the commercialization of the biosynthesis of microbial cellulose. Cellulose and wood-chemistry and technology, 573, pp.573-590

Yamada, Y., Hoshino, K.I. and Ishikawa, T., 1997. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Bioscience, biotechnology, and biochemistry, 61(8), pp.1244-1251.. DOI: https://doi.org/10.1271/bbb.61.1244

Yamada, Y., Hosono, R., Lisdyanti, P., Widyastuti, Y., Saono, S., Uchimura, T. and Komagata, K., 1999. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. The Journal of general and applied microbiology, 45(1), pp.23-28. DOI: https://doi.org/10.2323/jgam.45.23

Yeo, S.H., Lee, O.S., Lee, I.S., Kim, H.S., Yu, T.S. and Jeong, Y.J., 2004. Gluconacetobacter persimmonis sp. nov., isolated from Korean traditional persimmon vinegar. Journal of microbiology and biotechnology, 14(2), pp.276-283.

Zahan KA, Anuar AHI, Pa’e N, Ring LC, Yenn TW, and Mustapha M (2017). Characterization of bacterial cellulose produced via fermentation of acetobacter xylinum 0416. International Journal of Advanced and Applied Sciences, 4(3): 19-24. DOI: https://doi.org/10.21833/ijaas.2017.03.004

Zahoor, T., Siddique, F. and Farooq, U., 2006. Isolation and characterization of vinegar culture (Acetobacter aceti) from indigenous sources. British Food Journal, 108(6), pp.429-439. DOI: https://doi.org/10.1108/00070700610668405

Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. and Römling, U., 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular microbiology, 39(6), pp.1452-1463. DOI: https://doi.org/10.1046/j.1365-2958.2001.02337.x

Downloads

Published

2020-06-24

How to Cite

Kamal Mohammed, R., & M. AlZubaidy, Z. (2020). Production of Bacterial Cellulose by using Acetobacter xylinum Isolated from Local Vinegar. Al-Kufa University Journal for Biology, 12(2), 1–16. https://doi.org/10.36320/ajb/v12.i2.11780

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.