Molecular Detection of Carbapenem's Genes Among (Pseudomonas Areuginosa) Isolates


  • Qasim Najim Abdullah Faculty of Sciences, Ilam University, Iran
  • Hawraa A. Ali Al-Dahhan Faculty of Sciences, University of Kufa, Kufa, Najaf, Iraq
  • Arman Rostamzad Faculty of Sciences, Ilam University, Ilam, IRAN



Antibiotic susceptibility, Bacterial infections, Carbapenemase genes, Molecular detection, Pseudomonas aeruginosa, Resistance mechanisms


The antibiotic susceptibility of 125 P. aeruginosa isolated from 215 clinical samples (blood, urine, wound swab samples, sputum, and cerebrospinal fluid) was determined using the disk diffusion method on the Muller-Hinton agar medium. The results showed that the isolates had a high resistance rate to carbenicillin (83.2%) and piperacillin (76%). Resistance to imipenem and meropenem were 7.4% and 14.8%, respectively, while the highest resistance was found against gentamicin (77.9%) and amikacin (75.2%). The modified Hodge test was used to identify carbapenem-resistant isolates, which detects the probability of isolates being able to produce carbapenemases enzyme and out of the isolates, 11 (33.3%) were Hodge positive. The imipenem-meropenem-EDTA disk synergy test showed that only 17 isolates (51.5%) were positive. The carbapenemase genes were detected using PCR technology, and the most prevalent genes were MBL genes, which were carried by 17/33 (51%) of the isolates. The blaIMP gene (578 bp) was the most frequently detected MBL gene, being present in 15 (45.5%) of the carbapenem-resistant isolates. Among the isolates, 11 (33.3%) carried the blaIMP-type gene alone, while 2 (6.06%) carried it with the blaVIM-type gene and another 2 (6.06%) carried it with the blaNDM-type gene. Moreover, 2 (6.06%) isolates carried the blaVIM-type gene. However, results revealed that blaIMP-type genes were the most common MBL gene combination among the isolates. Moreover, 4 (12.1%) isolates carried a blaIMP -type gene.


Download data is not yet available.


AL-Muhannak FH, Al-Mohana A. Spread of Some Extended-spectrum Beta-lactamases: In Clinical Isolates of Gram-negative Bacilli in Najaf. LAP LAMBERT Academic Publishing; 2012.

Al-Shara JM. Phenotypic and molecular detecting of carbapenem resistant Pseudomonas aeruginosa in Najaf Hospitals (Doctoral dissertation, PhD Thesis. Faculty of Science. University of Kufa. Iraq); 2013.

Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, Carey RB, Thompson A, Stocker S, Limbago B, Patel JB. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. Journal of clinical microbiology. 2007 Aug;45(8):2723-5.

Bartlett JM, Stirling D, editors. PCR protocols. Totowa, NJ, USA: Humana Press; 2003 Aug, Vol. 226, pp. 3-525.

Flamm, R. K., Shortridge, D., Castanheira, M., Sader, H. S., & Pfaller, M. A. In vitro activity of minocycline against US isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus species complex, Stenotrophomonas maltophilia, and Burkholderia cepacia complex: results from the SENTRY Antimicrobial Surveillance Program, 2014 to 2018. Antimicrobial Agents and Chemotherapy, 2019, 63(11), e01154-19.

George, D., & Mallery, P. IBM SPSS statistics 27 step by step: A simple guide and reference. Routledge. 2021.

Gupta, E., Mohanty, S., Sood, S., Dhawan, B., Das, B. K., & Kapil, A. Emerging resistance to carbapenems in a tertiary care hospital in north India. Indian Journal of Medical Research. 2006, 124(1), 95-98.

Hammami, S., Gautier, V., Ghozzi, R., Da Costa, A., Ben-Redjeb, S., & Arlet, G. Diversity in VIM-2-encoding class 1 integrons and occasional blaSHV2a carriage in isolates of a persistent, multidrug-resistant Pseudomonas aeruginosa clone from Tunis. Clinical Microbiology and Infection. 2010, 16(2), 189-193.

Heidari, R., Farajzadeh Sheikh, A., Hashemzadeh, M., Farshadzadeh, Z., Salmanzadeh, S., & Saki, M. Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Molecular biology reports. 2022, 49(5), 3811-3822.

Krisztina, M.; Wallace, P.; Endimiani, A. Taracila, M. A and Bonomo R.A. Carbapenems: Past, Present, and Future. Antimicrob. Agents Chemother. 2011, 55, (11):4943–4960.

Lee, K., Chong, Y., Shin, H. B., Kim, Y. A., Yong, D., & Yum, J. H. Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clinical microbiology and infection. 2001, 7(2), 88-91.

Lee, K., Lim, J. B., Yum, J. H., Yong, D., Chong, Y., Kim, J. M., & Livermore, D. M. bla VIM-2 cassette-containing novel integrons in metallo-β-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrobial agents and chemotherapy. 2002, 46(4), 1053-1058.

Lee, K., Lim, Y. S., Yong, D., Yum, J. H., & Chong, Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. Journal of clinical microbiology. 2003, 41(10), 4623-4629.

Lim, T.P.; Lee, W.; Tan, T.Y.; Sasikala, S. and Teo, J. Effective Antibiotics in Combination against Extreme Drug-Resistant Pseudomonas aeruginosa with Decreased Susceptibility to Polymyxin. PLoS. 2011, 6(12).

MacFaddin, J. F. Biochemical tests for identification of medical bacteria, Williams and Wilkins. Philadelphia, PA. 2000, 113(7).

Moland, E. S., Kim, S. Y., Hong, S. G., & Thomson, K. S. Newer β-Lactamases: clinical and laboratory implications, Part I. Clinical Microbiology Newsletter, 2008, 30(10), 71-77.

Montaner, M., Lopez-Argüello, S., Oliver, A., & Moya, B. PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability. Microbiology spectrum, 2023, 11(1), e03038-22.

Noori, M., Karimi, A., Fallah, F., Hashemi, A., Alimehr, S., Goudarzi, H., & Aghamohammad, S. High prevalence of metallo-beta-lactamase producing Acinetobacter baumannii isolated from two hospitals in Tehran, Iran. Archives of Pediatric Infectious Diseases. 2014, 2(3).

Poirel, L., Figueiredo, S., Cattoir, V., Carattoli, A., & Nordmann, P. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrobial agents and chemotherapy. 2008, 52(4), 1252-1256.

Poirel, L., Lagrutta, E., Taylor, P., Pham, J., & Nordmann, P. Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrobial agents and chemotherapy. 2010, 54(11), 4914-4916.

Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., ... & Wu, M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy. 2022; 7(1), 199.

Rossi, E., La Rosa, R., Bartell, J. A., Marvig, R. L., Haagensen, J. A., Sommer, L. M., ... & Johansen, H. K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nature Reviews Microbiology. 2021, 19(5), 331-342.

Streeter, K., & Katouli, M. Pseudomonas aeruginosa: a review of their pathogenesis and prevalence in clinical settings and the environment. 2016.

Tan, T. Y., Hsu, L. Y., Koh, T. H., Ng, L. S., Tee, N. W., Krishnan, P., ... & Jureen, R. Antibiotic resistance in gram-negative bacilli: a Singapore perspective. Ann Acad Med Singapore. 2008, 37(10), 819-825.

Thornton, J. M., Walker, J. M., Sundarasivarao, P. K., Spur, B. W., Rodriguez, A., & Yin, K. Lipoxin A4 promotes reduction and antibiotic efficacy against Pseudomonas aeruginosa biofilm. Prostaglandins & other lipid mediators. 2021, 152, 106505.

Walkty, A., Lagace-Wiens, P., Adam, H., Baxter, M., Karlowsky, J., Mulvey, M. R., ... & Zhanel, G. G. Antimicrobial susceptibility of 2906 Pseudomonas aeruginosa clinical isolates obtained from patients in Canadian hospitals over a period of 8 years: results of the Canadian Ward surveillance study (CANWARD), 2008–2015. Diagnostic microbiology and infectious disease. 2017, 87(1), 60-63.

Yin, X. L., Hou, T. W., Xu, S. B., Ma, C. Q., Yao, Z. Y., Li, W., & Wei, L. Detection of drug-resistance–associated genes of multidrug-resistant Acinetobacter baumannii. Microbial Drug Resistance. 2008, 14(2), 145-150.

Zavascki, A. P., Carvalhaes, C. G., Picao, R. C., & Gales, A. C. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert review of anti-infective therapy. 2010, 8(1), 71-93.




How to Cite

Najim Abdullah, qasim, A. Ali Al-Dahhan, H., & Rostamzad, A. (2023). Molecular Detection of Carbapenem’s Genes Among (Pseudomonas Areuginosa) Isolates. Al-Kufa University Journal for Biology, 15(2), 87–96.