The Characteristics Of The Pseudomonas aeruginosa And How To Prevention From Them.

Authors

  • Mytham J. Abdul Hussain Department of Pathological Analysis Techniques, IRAQ College Of Health and Medical Techniques , Al-Bayan University
  • Mervet Mshachal Abdulhasan Mshachal Department of Pathological Analysis Techniques, IRAQ College Of Health and Medical Techniques, Al-Bayan University

DOI:

https://doi.org/10.36320/ajb/v14.i2.11714

Keywords:

P. aeruginosa, Bacterial nosocomial infections, β-Lactamase, gram-negative

Abstract

The infections that causes  by Pseudomonas aeruginosa is usually responsible for the nosocomial infections of the United States. Occurs in the each year approximality  51,000 cases of  P. aeruginosa infections , and the persons the most risk of infection are those most exposer into equipment of  hospital that has not well desinfection such as ventilation of mechanical and catheters.Some strains of  P. aeruginosa that mutate or those  that production of  β-Lactamase enzymes that resistance into penicillins.The enzymes of  β-Lactamase acts on the disruption into atomic structure of  Carbapenems , Penicillins, Monobactams  and Cephalosporins , and also the mechanisms that provides to  resistance into penicillins such as efflux pumps of genetically encoded that acting as transmembrane proteins that help to secrete toxic materials. The mutations that influence to expression of gene for P. aeruginosa  provide immune to support antimicrobials. So that results into decrease of specific genes that leads into production wide spectrum of β-Lactamase. The  immune increase against penicillin and other antibiotics is important role play to the stay length of a patient's in  hospital and rate of mortality.The conjugation of bacteria role play to an increase resistance for the antibiotics and some P. aeruginosa strains  have become  immune against all penicillins.The P. aeruginosa of  illumination  that leds into provides measures of preventative and steps that leads to fight of outbreaks nosocomial . These review  aids into  address mechanisms of resistance and discuss the preventative measures and its effectiveness that used today.

Downloads

Download data is not yet available.

References

Centers for Disease Control and Prevention (2014) Healthcare-associated Infections. [https://www.cdc.gov/hai/organisms/

pseudomonas.html] Retrieved on January 04, 2018.

Favero MS, Carson LA, Bond WW, Petersen NJ (1971) Pseudomonas aeruginosa: Growth in distilled water from hospitals. Science 173: 836-838. DOI: https://doi.org/10.1126/science.173.3999.836

Pollack M (2000) Pseudomonas aeruginosa. In: Mandell GL, Bennett JE, Dolin R, (eds). Principles and Practice of Infectious Diseases. (5th edn), Churchill Livingstone, New York, NY, USA. pp: 2310-2327.

Iglewski BH (1996) Pseudomonas. In: Baron S, (ed). Medical Microbiology. (4th edn). Galveston (TX): University of Texas Medical Branch at Galveston, Texas, USA.

Pollack M, Anderson SE Jr (1978) Toxicity of Pseudomonas aeruginosa exotoxin A for human macrophages. Infect Immun 19: 1092-1096. DOI: https://doi.org/10.1128/iai.19.3.1092-1096.1978

Beta Lactam Antibiotics (2011) Beta Lactam Antibiotics — Antimicrobial resistance learning site for veterinary students,

Michigan State Univeristy, USA.

Angus BL, Carey AM, Caron DA, Kropinski AM, Hancock RE (1982) Outer membrane permeability in Pseudomonas aeruginosa:

comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 21: 299-309. DOI: https://doi.org/10.1128/AAC.21.2.299

Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, et al. (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44: 3322-3327. DOI: https://doi.org/10.1128/AAC.44.12.3322-3327.2000

Debarati C, Anamika G, Debadatta DC, Anupam DT, Manabendra DC, et al. (2016) Premature termination of MexR leads to overexpression of MexAB-OprM efflux pump in Pseudomonas aeruginosa in a Tertiary Referral Hospital in India. PLoS ONE 11: E0149156. DOI: https://doi.org/10.1371/journal.pone.0149156

Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of

chromosomally encoded resistance mechanisms. Clin Microbiol Rev: 22: 582-610.

Srikumar R, Li XZ, Poole K (1997) Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. J Bacteriol 179: 7875-7881. DOI: https://doi.org/10.1128/jb.179.24.7875-7881.1997

Okamoto K, Gotoh N, Nishino T (2002) Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: Substrate specificities of the efflux systems. J Infect Chemother 8: 371-373. DOI: https://doi.org/10.1007/s10156-002-0193-7

Aires JR, Köhler T, Nikaido H, Plésiat P (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43: 2624–2628. DOI: https://doi.org/10.1128/AAC.43.11.2624

Chuanchuen R, Murata T, Gotoh N, Schweizer HP (2005) Substrate- dependent utilization of OprM or OpmH by the Pseudomonas

aeruginosa MexJK efflux pump. Antimicrob Agents Chemother 49: 2133–2136.

Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an DOI: https://doi.org/10.1038/35023079

opportunistic pathogen. Nature 406: 959-964.

Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: The role of biofilms. Prog. Drug Res 37: 91-105. DOI: https://doi.org/10.1007/978-3-0348-7139-6_2

Gurung J, Khyriem AB, Banik A, Lyngdoh WV, Choudhury B (2013) Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J Crit Care Med 17: 4214–218. DOI: https://doi.org/10.4103/0972-5229.118416

Trfipper DJ, Strominger JL (1965) Mechanism of action of penicillins: A proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 54: 1133–1141. DOI: https://doi.org/10.1073/pnas.54.4.1133

Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by DOI: https://doi.org/10.1128/JB.183.23.6746-6751.2001

antimicrobials. J Bacteriol 183: 6746–6751.

Hendricks MR, Lashua LP, Fischer DK, Flitter BA, Eichinger KM, et al. (2016) Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci U S A 113: 1642–1647. DOI: https://doi.org/10.1073/pnas.1516979113

Tielen P, Rosin N, Meyer AK, Dohnt K, Haddad I (2013) Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. PLoS ONE 8: e71845. DOI: https://doi.org/10.1371/journal.pone.0071845

Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45: 999-1007. DOI: https://doi.org/10.1128/AAC.45.4.999-1007.2001

Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70: 267-274. DOI: https://doi.org/10.1007/s10541-005-0111-6

Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44: 640-646. DOI: https://doi.org/10.1128/AAC.44.3.640-646.2000

Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS ONE 8: e61625. DOI: https://doi.org/10.1371/journal.pone.0061625

Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G (2012) The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator ampr includes virulence genes. PLoS ONE 7: e34067. DOI: https://doi.org/10.1371/journal.pone.0034067

Shaikh S, Fatima J, Shakil S, Rizvi SM D, Kamal MA (2015) Antibiotic resistance and extended spectrum beta-lactamases: Types, DOI: https://doi.org/10.1016/j.sjbs.2014.08.002

epidemiology and treatment. Saudi J Biol Sci 22: 90-101. 30

Weldhagen GF, Poirel L, Nordmann P (2003) Ambler Class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: Novel

developments and clinical impact. Antimicrob Agents Chemother 47: 2385–2392.

Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G (2003) Antibiotic resistance among gram-negative bacilli in US DOI: https://doi.org/10.1001/jama.289.7.885

Intensive Care units: implications for fluoroquinolone use. JAMA 289: 85–888.

Lee M, Hesek D, Suvorov M, Lee W, Vakulenko S (2003) A mechanism-based inhibitor targeting the DD-transpeptidase activity of bacterial penicillin-binding proteins. J Am Chem Soc 125: 16322-16326. DOI: https://doi.org/10.1021/ja038445l

Jovetic S, Zhu Y, Marcone GL, Marinelli F, Tramper J (2010) β-Lactam and glycopeptide antibiotics: First and last line of defense? Trends Biotechnol 28: 596-604. DOI: https://doi.org/10.1016/j.tibtech.2010.09.004

Bonnet R (2004) Growing group of extended-spectrum β-lactamases: DOI: https://doi.org/10.1128/AAC.48.1.1-14.2004

The CTX-M enzymes. Antimicrob Agents Chemother 48: 1-14.

Evans BA, Amyes SG (2014) OXA β-lactamases. Clin Microbiol Rev 27: 241-263. DOI: https://doi.org/10.1128/CMR.00117-13

Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B (1991) A standard numbering scheme for the class A beta-lactamases. DOI: https://doi.org/10.1042/bj2760269

Biochem J 276: 269-270.

Dale JW, Smith JT (1974) R-Factor-Mediated β-lactamases that hydrolyze oxacillin: Evidence for two distinct groups. J Bacteriol 119: 351-356. DOI: https://doi.org/10.1128/jb.119.2.351-356.1974

Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular DOI: https://doi.org/10.1128/AAC.39.6.1211

structure. Antimicrob Agents Chemother 39: 1211-1233.

Santillana E, Beceiro A, Bou G, Romero A (2007) Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis. Proc Natl Acad Sci U S A 104: 5354-5359. DOI: https://doi.org/10.1073/pnas.0607557104

Bradford PA (2001) Extended-spectrum β-lactamases in the 21st

Century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14: 933–951. DOI: https://doi.org/10.1128/CMR.14.4.933-951.2001

George ME, Bush k (2001) New β-lactamases in gram-negative bacteria: Diversity and impact on the selection of antimicrobial

therapy. Clin Infect 32: 1085–1089.

Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54: 969-976. DOI: https://doi.org/10.1128/AAC.01009-09

Poirel L, Ronco E, Naas T, Nordmann P (1999) Extended-spectrum β-lactamase TEM-4 in Pseudomonas aeruginosa. Clin Microbiol Infect 5: 651–652. DOI: https://doi.org/10.1111/j.1469-0691.1999.tb00425.x

Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E (1996) A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 40: 2488-2493. DOI: https://doi.org/10.1128/AAC.40.11.2488

Bauernfeind A, Stemplinger I, Jungwirth R, Mangold P, Amann S (1996) Characterization of beta-lactamase gene blaPER-2, which

encodes an extended-spectrum class A beta-lactamase. Antimicrob Agents Chemother 40: 616–620.

Vahaboglu H, Oztürk R, Aygün G, Coşkunkan F, Yaman A (1997) Widespread detection of PER-1-type extended-spectrum beta-

lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: A nationwide multicenter study.

Antimicrob Agents Chemother 41: 2265–2269.

Vahaboglu H, Oztürk R, Aygün G, Coşkunkan F, Yaman A (2005) Clavulanic acid inactivation of SHV-1 and the inhibitor-resistant

S130G SHV-1 β-lactamase. Insights into the mechanism of inhibition. J Biol Chem 280: 35528-35536.

Weldhagen GF, Poirel L, Nordmann P (2003) Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: Novel

developments and clinical impact. Antimicrob Agents Chemother 47: 2385-2392.

De Champs C, Poirel L, Bonnet R, Sirot D, Chanal C, et al. (2002)Prospective survey of β-lactamases produced by ceftazidime-

resistant Pseudomonas aeruginosa isolated in a French Hospital in 2000. Antimicrob Agents Chemother 46: 3031-3034.

Empel J, Filczak K, Mrówka A, Hryniewicz W, Livermore DM, et al.(2007) Outbreak of Pseudomonas aeruginosa infections with PER-

extended-spectrum β-lactamase in Warsaw, Poland: Further Vol.2 No.2:18 evidence for an international clonal complex . J Clin Microbiol 45: 2829–2834. DOI: https://doi.org/10.1128/JCM.00997-07

Szabó D, Szentandrássy J, Juhász Z, Katona K, Nagy K (2008) Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary. Ann Clin Microbiol Antimicrob 7: 12. DOI: https://doi.org/10.1186/1476-0711-7-12

Pagani L, Mantengoli E, Migliavacca R, Nucleo E, Pollini S (2004) Multifocal detection of multidrug-resistant Pseudomonas aeruginosa

producing the PER-1 Extended-Spectrum β-lactamase in Northern Italy. J Clin Microbiol 42: 2523-2529. DOI: https://doi.org/10.1128/JCM.42.6.2523-2529.2004

Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, Ashour MS (2014) Antimicrobial resistance pattern and their beta-lactamase DOI: https://doi.org/10.1155/2014/101635

encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. Biomed Res Int pp: 101635

Eraç B, Hoşgör-Limoncu M, Ermertcan Ş, Taşlı H, Aydemir Ş (2013) Prevalence of blaPER-1 and Integrons in ceftazidime-resistant gram-negative bacteria at a University Hospital in Turkey. Jpn J Infect Dis 66: 146-148. DOI: https://doi.org/10.7883/yoken.66.146

Danel F, Hall LM, Gur D, Akalin HE, Livermore DM (1995) Transferable production of PER-1 beta-lactamase in Pseudomonas aeruginosa. J Antimicrob Chemother 35: 281-294. DOI: https://doi.org/10.1093/jac/35.2.281

Bae IK, Jang SJ, Kim J, Jeong SH, Cho B (2011) Interspecies dissemination of the bla gene encoding PER-1 extended-spectrum

β-lactamase . Antimicrob Agents Chemother 55: 1305-1307.

Liakopoulos A, Mevius D, Ceccarelli D (2016) A review of SHV extended-spectrum β-lactamases: Neglected yet ubiquitous. Front DOI: https://doi.org/10.3389/fmicb.2016.01374

Microbiol 7: 1374.

Chen Z, Niu H, Chen G, Li M, Li M, et al. (2015) Prevalence of ESBLs-producing Pseudomonas aeruginosa isolates from different wards in a Chinese teaching hospital. Int J Clin Exp Med 8: 19400–19405.

Poirel L, Lebessi E, Castro M, Fèvre C, Foustoukou M, et al. (2004). Nosocomial outbreak of extended-spectrum β-lactamase SHV-5-

producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrobial Agents and Chemotherapy, 48: 2277–2279.

Izaki K, Matsuhashi M, Strominger JL (1966) Glycopeptide transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive DOI: https://doi.org/10.1016/0076-6879(66)08088-1

enzymatic reactions. Proc Natl Acad Sci U S A: 55: 656-663.

Sykes RB, Morrb A (1975) Resistance of Pseudomonas aeruginosa to antimicrobiol drugs. Prog Med Chem 12: 333-393. DOI: https://doi.org/10.1016/S0079-6468(08)70180-2

Yoshimura F, Nikaido H (1982) Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 152: DOI: https://doi.org/10.1128/jb.152.2.636-642.1982

-642.

Nikaido H (1998) The role of outer membrane and efflux pumps in the resistance of gram-negative bacteria. Can we improve drug DOI: https://doi.org/10.1016/S1368-7646(98)80023-X

access? Drug Resistance Updates 1: 93-98.

Straatsma TP, Soares TA (2009) Characterization of the outer membrane protein OprF of Pseudomonas aeruginosa in a lipopolysaccharide membrane by computer simulation. Proteins, 74: 475-488. DOI: https://doi.org/10.1002/prot.22165

Li XZ, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev DOI: https://doi.org/10.1128/CMR.00117-14

: 337–418.

Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67: 593-656. DOI: https://doi.org/10.1128/MMBR.67.4.593-656.2003

Quale J, Bratu S, Gupta J, Landman D (2006) Interplay of Efflux System, ampC, and oprD expression in carbapenem resistance

of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 50: 1633–1641.

Bell A, Bains M, Hancock RE (1991) Pseudomonas aeruginosa outer membrane protein OprH: expression from the cloned gene and function in EDTA and gentamicin resistance. J Bacteriol 173: 6657–6664. DOI: https://doi.org/10.1128/jb.173.21.6657-6664.1991

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, et al. (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268-281. DOI: https://doi.org/10.1111/j.1469-0691.2011.03570.x

Saint S, Kowalski CP, Kaufman SR, Hofer TP, Kauffman CA (2008) Preventing hospital-acquired urinary tract infection in the United DOI: https://doi.org/10.1086/524662

States: A National Study. Clin Infect Dis 46: 243-250.

Schumm K, Lam TB (2008) Types of urethral catheters for management of short-term voiding problems in hospitalized adults: DOI: https://doi.org/10.1002/14651858.CD004013.pub3

A short version cochrane review. Neurourol Urodyn 27: 738–746.

Warren JW (2001) Catheter-associated urinary tract infections. Int J Antimicrob Agents 17: 299-303. DOI: https://doi.org/10.1016/S0924-8579(00)00359-9

Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, et al. (2005) Pseudomonas aeruginosa bloodstream infection: Importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 49: 1306-1311. DOI: https://doi.org/10.1128/AAC.49.4.1306-1311.2005

Daniels KR, Frei CR (2013) The United States' progress toward eliminating catheter-related bloodstream infections: Incidence, mortality, and hospital length of stay from 1996 to 2008. Am J Infect Control 41: 118-121. DOI: https://doi.org/10.1016/j.ajic.2012.02.013

Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15: 194-222. DOI: https://doi.org/10.1128/CMR.15.2.194-222.2002

Koenig SM, Truwit JD (2006) Ventilator-associated pneumonia: Diagnosis, treatment and prevention. Clin Microbiol Rev 19: 637-657. DOI: https://doi.org/10.1128/CMR.00051-05

Alp E, Voss A (2006) Ventilator associated pneumonia and infection control. Ann Clin Microbiol Antimicrob 5: 7. DOI: https://doi.org/10.1186/1476-0711-5-7

Kalanuria AA, Zai W, Mirski M (2014) Ventilator-associated pneumonia in the ICU. Crit Care 18: 208. DOI: https://doi.org/10.1186/cc13775

Metersky ML, Wang Y, Klompas M, Eckenrode S, Bakullari A (2016) Trend in Ventilator-Associated Pneumonia Rates Between 2005 and 2013. JAMA 316: 2427-2429. DOI: https://doi.org/10.1001/jama.2016.16226

Berriel-Cass D, Adkins FW, Jones P, Fakih MG (2006) Eliminating nosocomial infections at Ascension Health. Jt Comm J Qual Patient DOI: https://doi.org/10.1016/S1553-7250(06)32079-X

: 612-620.

Unahalekhaka A, Jamulitrat S, Chongsuvivatwong V, Ovretveit J (2007) Using a collaborative to reduce ventilator-associated pneumonia in Thailand. Jt Comm J Qual Patient Sa 33: 387-394. DOI: https://doi.org/10.1016/S1553-7250(07)33044-4

O'Grady NP, Murray PR, Ames N (2012) Preventing ventilator-associated pneumonia: Does the evidence support the practice? DOI: https://doi.org/10.1001/jama.2012.6445

JAMA 307: 2534-2539.

Timsit JF, Esaied W, Neuville M, Bouadma L, Mourvllier B (2017) Update on ventilator-associated pneumonia. F1000Res 6: 2061. DOI: https://doi.org/10.12688/f1000research.12222.1

Stone PW (2009) Economic burden of healthcare-associated infections: An American perspective. Expert Rev Pharmacoecon Outcomes Res 9: 417-422. DOI: https://doi.org/10.1586/erp.09.53

Recommendation of the Federal Environment Agency after Consultation with the Drinking Water Commission (2017) Recommendation for required studies on Pseudomonas aeruginosa, or risk assessment and measures for detection in drinking water.

Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 60: 1180-1183.

Bédard E, Prévost M, Déziel E (2016) Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiologyopen 5: 937-956. DOI: https://doi.org/10.1002/mbo3.391

Brook I (2011) Microbiology of sinusitis. Proc Am Thorac Soc 8: 90-100. DOI: https://doi.org/10.1513/pats.201006-038RN

Razek AAKA (2014) Computed tomography and magnetic resonance imaging of lesions at masticator space. Jpn J Radiol 32:

-137.

Razek AA, Sieza S, Maha B (2009) Assessment of nasal and paranasal sinus masses by diffusion-weighted MR imaging. J Neuroradiol 36: 206-211.

Razek AA (2010) Diffusion-weighted magnetic resonance imaging of head and neck. J Comput Assist Tomogr 34: 808-815. DOI: https://doi.org/10.1097/RCT.0b013e3181f01796

Razek AAKA .(2014). Computed tomography and magnetic resonance imaging of lesions at masticator space. Jpn J Radiol 32: DOI: https://doi.org/10.1007/s11604-014-0289-x

-137.

Razek AA, Sieza S, Maha B .(2009). Assessment of nasal and paranasal sinus masses by diffusion-weighted MR imaging. J Neuroradiol 36: 206-211. DOI: https://doi.org/10.1016/j.neurad.2009.06.001

Downloads

Published

2022-06-14

How to Cite

J. Abdul Hussain, M., & Mshachal, M. (2022). The Characteristics Of The Pseudomonas aeruginosa And How To Prevention From Them . Al-Kufa University Journal for Biology, 14(2), 86–99. https://doi.org/10.36320/ajb/v14.i2.11714

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.