Dissemination of Metallo-β-Lactamase Genes in Pseudomonas aeruginosa Isolated from Najaf Hospitals

Authors

  • Jamal M. Ridha Al-shara
  • Ali M. Almohana

DOI:

https://doi.org/10.36320/ajb/v7.i3.8066

Keywords:

Metallo-β-Lactamase, Pseudomonas aeruginosa, Efflux pumps

Abstract

Carbapenems are therapeutic choice against infections caused by Gram-negative bacilli including strains of Pseudomonas aeruginosa. Efflux pumps, porins, PBPs and β-lactamases mediate resistance to these antibiotics. The aim of this study was to determine the possibility of existence of metallo-β-lactamase (MBL) genes among P. aeruginosa isolates collected from Najaf hospitals. During the study period from February to October 2011, thirty-six carbapenem resistant P. aeruginosa isolates were collected. The susceptibility to different antibiotics was evaluated by disk diffusion method, MICs of imipenem and meropenem were also determined. PCR performed for detection of blaIMP, blaVIM, blaSPM and blaNDM genes. All isolate were multidrug resistance and 21 produced MBLs. The blaIMP, blaSPM, blaVIM and blaNDM genes were detected among 13, 8, 4 and 2 isolates, respectively. The MICs of isolates to imipenem and meropenem were 4-128 μg/mL and 4-256 μg/mL, respectively. We concluded that production of MBL enzymes presents an emerging threat of carbapenem resistance among P. aeruginosa in Najaf city. This is the first report of IMP, SPM, VIM, and NDM β-lactamase producing P. aeruginosa in Iraq

Downloads

Download data is not yet available.

References

Brooks, G.F.; Butel, J.S. and Morse, S.A. (2007). Enteric Gram-negative rods (Enterobacteriaceae). In Brooks G.F.; Butel, J.S.; Morse, S.A.; Jawetz, Melnick, and Adelberg’s Medical Microbiology. 24th ed. McGraw-Hill, USA.

Strateva, T. and Yordanov, D.(2009). Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J. Med.Microbio.,58,1133–1148. DOI: https://doi.org/10.1099/jmm.0.009142-0

Gupta,V.(2008). Metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter species. Exp. Opin. Investig. Drugs.,17(2):131-143. DOI: https://doi.org/10.1517/13543784.17.2.131

Walsh, T. R. (2008). Clinically significant carbapenemases: an update. Curr. Opin. Infect. Dis.,21:367-371. DOI: https://doi.org/10.1097/QCO.0b013e328303670b

Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K. and Walsh, T.R. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemoth., 53(12): 5046-5054. DOI: https://doi.org/10.1128/AAC.00774-09

Manageiro, V.; Ferreira,E.; Jones-Dias, D.; Louro, D.; Pinto, M.; Diogo, J.and Caniça, M. (2011).Emergence of β-lactamase-mediated resistance to oxyimino-β-lactams in Enterobacteriaceae isolates in various services in a single centre: risk factors and contribution of the newly detected CTX-M-3 variant in Portugal. Submitted to Int. J. Antimicrob. Agents.,51 (6): 1946-1955

Queenan, A.M. and Bush, K.(2007). Carbapenemases: the Versatile β-Lactamases. Cli. Microbio. Rev., 20(3):440–458. DOI: https://doi.org/10.1128/CMR.00001-07

Gibb, A. P.; Tribuddharat, C.; Moore, R. A.; Louie, T. J.; Krulicki, W.; Livermore, D. M.; Palepou, M. F. and Woodford, N. (2002). Nosocomial outbreak of carbapenem‐resistant Pseudomonas aeruginosa with a new blaIMP allele, blaIMP‐7. Antimicrob.Agents Chemother. 46:255–258. DOI: https://doi.org/10.1128/AAC.46.1.255-258.2002

Lee, K.; Lee, W. G.; Uh, Y.; Ha, G. Y.; Cho, J. and Chong, Y.(2003).VIM- and IMP-type metallo-β-lactamase-producing Pseudomonas spp. and Acinetobacter spp. spp. in Korean hospitals. Emerg. Infect. Dis.,9:868-871. DOI: https://doi.org/10.3201/eid0907.030012

Nordmann, P.; Poirel, L.; Toleman, M.A.and Walsh, T.R.(2011). Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria. J. Antimicrob. Chemother. doi: 10.1093/jac/dkq520. DOI: https://doi.org/10.1093/jac/dkq520

Weldhagen, G. F., and A. Prinsloo. (2004). Molecular detection of GES-2 extended spectrum β-lactamase producing Pseudomonas aeruginosa in Pretoria, South Africa. Int. J. Antimicrob. Agen., 24:35–38. DOI: https://doi.org/10.1016/j.ijantimicag.2003.12.012

Falagas, M.E.; Rafailidis, P.I.; Matthaiou, D.K.; Virtzili, S.; Nikita, D.; Michalopoulos, A. (2008).Pandrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii infections: characteristics and outcome in a series of 28 patients. Int. J. Antimicrob. Agents.,32(5):450-4. DOI: https://doi.org/10.1016/j.ijantimicag.2008.05.016

Clinical and Laboratory Standards Institute (CLSI). (2012).Performance Standards for Antimicrobial Susceptibility Testing; 22ed. Informational Supplement.32 (3).

Yong, D.; Lee, K.; Yum, J. H.; Shin, H. B.; Rossolini, G. M. and Chong, Y. (2002). Imipenem-EDTA disk method for differentiation of metallo-β-lactamase- producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol.,40:3798–3801. DOI: https://doi.org/10.1128/JCM.40.10.3798-3801.2002

Clinical and Laboratory Standards Institute (CLSI). (2010). Performance standards for antimicrobial susceptibility testing; 20th . Clin.and Labo. Stan. Ins.

Walsh, T. R.; Bolmastrom, A.; Qwarnstrom, A. and Gales, A. (2002) Evaluation of a newEtest for detecting metallo-ß-lactamases in routine clinical testing. J. Clin.Microbiol.,40:2755- 2759. DOI: https://doi.org/10.1128/JCM.40.8.2755-2759.2002

Pospiech T, Neumann J. Genomic DNA isolation. In: Kieser T, editor. John Innes Center. Norwich NR4 7UH. UK, 1995.

Lee, K.; Yum, J.H.; Yong, D.; Lee, H.M.; Kim, H.D.; Docquier, J.D.and Rossolini, G.M.(2005). Novel acquired metallo-β-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter spp.clinical isolates from Korea. Antimicrob. Agents Chemother.,49:4485-4491. DOI: https://doi.org/10.1128/AAC.49.11.4485-4491.2005

Yin, X.; Hou, T.; Xu, S.; Ma, C.; Yao, Z.; Li, W. and Wei, L. (2008). Detection of drug resistance–associated genes of multidrug resistant Acinetobacter baumannii microbial drug resistance, 14 (2): 145-150. DOI: https://doi.org/10.1089/mdr.2008.0799

Zarfel, G.; Hoenigl, M.; Leitner, E.; Salzer, H.J.F.; Feierl, G.and Masoud, L.( 2011) Emergence of New Delhi metallo-β-lactamase, Austria, Emerg. Infect. Dis. Jan. 17(1). DOI: https://doi.org/10.3201/eid1701.101331

Meenakumari, S.; Verma, S.; Absar, A.and Chaudhary, A.(2011). Antimicrobial Susceptibility Pattern of Clinical Isolates of Pseudomonas aeruginosa in an Indian Cardiac Hospital. International Journal of Engineering Science and Technology (IJEST).,3(9):7117-7123.

Fonseca, A.P.; Correia, P.; Sousa, J.C. and Tenreiro, R. (2007). Association patterns of Pseudomonas aeruginosa clinical isolates as revealed by virulence traits, antibiotic resistance, serotype and genotype. FEMS Immunol. Med. Microbiol., 51(3): 505-516. DOI: https://doi.org/10.1111/j.1574-695X.2007.00328.x

Walsh, T.R.(2005). The emergence and implications of metallo-β-lactamases in Gram-negative bacteria. Clin Microbiol Infect.,11: 2-9. DOI: https://doi.org/10.1111/j.1469-0691.2005.01264.x

Hammami, S.; Gautier, V.; Ghozzi, R.; Da Costa, A.and Ben-Redjeb, S.(2010). Diversity in VIM-2-encoding class 1 integrons and occasional blaSHV2 a carriage in isolates of a persistent, multidrug-resistant Pseudomonas aeruginosa clone from Tunis. Clin.Microbiol Infect.,16:189-193. DOI: https://doi.org/10.1111/j.1469-0691.2009.03023.x

Lledo, W.; Hernandez, M.; Lopez, E.; Molinari, O.L.and Soto, R.Q.(2009). Guidance for Control of Infections with Carbapenem-resistant or Carbapenemase- producing Enterobacteriaceae Isolates in Acute Care Facilities. JAMA., 301: 1979–1982.

Munoz-Price, L.S. and Quinn, J.P. (2009) The Spread of Klebsiella pneumonia Carbapenemases: A Tale of Strains, Plasmids, and Transposons.Clin. Infect. Dis.,49:1739–1741. DOI: https://doi.org/10.1086/648078

Lee, K.; Lim, Y.S.; Yong, D.; Yum, J. H. and Chong, Y. (2003 b). Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol.,41(10): 4623-4629. DOI: https://doi.org/10.1128/JCM.41.10.4623-4629.2003

Hemalatha,V.; Sekar, U.; Kamat, V.(2005). Detection of metallo betalactamases producing Pseudomonas aeruginosa in hospitalized patients. Indian J. Med. Res.,122:148-152.

Marra, A. R.; Pereira, C. A.; Gales, A. C.; Menezes, L. C.; Cal, R. G.and de Souza, J. M. (2006). Bloodstream infections with metallo-β-lactamase-producing Pseudomonas aeruginosa: epidemiology, microbiology, and clinical outcomes. Antimicrob.Agents Chemother.,50: 388–390. DOI: https://doi.org/10.1128/AAC.50.1.388-390.2006

Uma, K. R.; Srinivasa, R.R.; Suchismita, S.; Shashikala, P.and Kanungo, R.(2009).Phenotypic and genotypic assays for detecting the prevalence of MBL in clinical isolates of Acinetobacter spp. baumannii from a South Indian tertiary care hospital. J. Med.Microbiol.,58: 430-435. DOI: https://doi.org/10.1099/jmm.0.002105-0

Gupta, V.; Datta, P. and Chander, J.(2006 b). Prevalence of MBL (MBL) producing Pseudomonas spp and Acinetobacter spp. spp in a tertiary care hospital in India. J Inf.,52:311-4. DOI: https://doi.org/10.1016/j.jinf.2005.08.013

Krishna, B.V.(2010).New Delhi metallo-beta-lactamases: a wake-up call for microbiologists. Indian J. Med. Microbiol.,28:265–6. DOI: https://doi.org/10.4103/0255-0857.66477

Poirel, L.; Naas, T.; Nicolas, D.; Collet, L.; Bellais, S.; Cavallo, J.-D. and Nordmann. P.(2000). Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob.Agents Chemother., 44:891–897. DOI: https://doi.org/10.1128/AAC.44.4.891-897.2000

Peleg, A. Y.; Franklin, C.; Bell, J. M. and Spelman. D. W. (2005). Dissemination of the metallo-β-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin. Infect. Dis., 41: 1549-1556. DOI: https://doi.org/10.1086/497831

Toleman, M.A.; Simm, A.M.and Murphy, T.A. (2002).Molecular characterization of SPM-1, a novel metallo- β -lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J.Antimicrob. Chemother.,50 : 673 -9. DOI: https://doi.org/10.1093/jac/dkf210

Picao, R.; Poirel, L.and Gales, A.(2009). Diversity of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob. Agents Chemother.,53:3908-13. DOI: https://doi.org/10.1128/AAC.00453-09

Salabi, A.E.; Toleman, M.A.; Weeks, J.; Bruderer, T.; Frei, R. and Walsh, T.R.(2010) First report of the metallo-β-lactamase SPM-1 in Europe. Antimicrob. Agents Chemother.,54:582. DOI: https://doi.org/10.1128/AAC.00719-09

Shahcheraghi,F.;Abbasalipour, M.; Feizabadi, M.M.;Ebrahimipour, G.H. and Akbari, N.(2011).Isolation and genetic characterization of metallo-β-lactamase and carbapenamase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iran. J. Microbiol. 3(2):68-74.

Zavascki, A.P.;Carvalhaes, C. G.; Picao, R.C. ;Gales, A. C.(2010). Multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev. Anti. Infect. Ther., 8(1):71–93. DOI: https://doi.org/10.1586/eri.09.108

Jovcic, B.; Lepsanovic, Z.; Suljagic, V.; Rackov, G.; Begovic, J.and Topisirovic, L. (2011). Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob. Agents Chemother.,55(8):3929-31. DOI: https://doi.org/10.1128/AAC.00226-11

Flateau, C.; Janvier, F.; Delacour, H.; Males, S.; Ficko, C.; Andriamanantena, D.; Jeannot, K.; Mérens, A.and Rapp, C. (2012).Recurrent pyelonephritis due to NDM-1 metallo-beta-lactamase producing Pseudomonas aeruginosa in a patient returning from Serbia, France, 2012. Euro Surveill.,17(45):20311. DOI: https://doi.org/10.2807/ese.17.45.20311-en

Cholley, P.;Thouverez, M.; Hocquet, D.; van der Mee-Marquet, N.; Talon, D.; Bertrand, X.(2011). Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J. Clin Microbiol.,49(7):2578-83. DOI: https://doi.org/10.1128/JCM.00102-11

Leverstein-van, H.M.A.; Stuart, J.C.; Voets, G.M.(2010). Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect. Dis.,10: 830–1. DOI: https://doi.org/10.1016/S1473-3099(10)70277-2

Wu, H.S.; Chen, T.L.; Chen, I.C.(2010). First identification of a patient colonized with Klebsiella pneumoniae carrying blaNDM-1 in Taiwan. J Chin Med Assoc.,73:596–8. DOI: https://doi.org/10.1016/S1726-4901(10)70129-5

Poirel, L.; Al Maskari, Z. and Al Rashdi, F.(2011a). NDM-1-producing Klebsiella pneumoniae isolated in the Sultanate of Oman. J. Antimicrob. Chemother., 66: 304–6. DOI: https://doi.org/10.1093/jac/dkq428

Poirel, L.; Fortineau, N.and Nordmann, P.(2011b). International transfer of NDM-1- producing Klebsiella pneumoniae from Iraq to France. Antimicrob. Agents Chemother., 55(4): 1821–1822. DOI: https://doi.org/10.1128/AAC.01761-10

Downloads

Published

2015-10-13

How to Cite

M. Ridha Al-shara, J., & M. Almohana, A. (2015). Dissemination of Metallo-β-Lactamase Genes in Pseudomonas aeruginosa Isolated from Najaf Hospitals. Al-Kufa University Journal for Biology, 7(3), 68–82. https://doi.org/10.36320/ajb/v7.i3.8066

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.