This is an outdated version published on 2023-12-31. Read the most recent version.

Assessing the Efficacy of Dextran and Dextransucrase in Modulating MCF-7 Breast Cancer Cell Activity

Authors

  • Yasameen Hasan Ali Department of Biology, College of Science, Mustansiriyah University, Baghdad/ Iraq
  • Sahera Nosaif Department of Biology, College of Science, Mustansiriyah University, Baghdad/ Iraq
  • Asraa Husain Hamza Department of Biology, College of Science, Mustansiriyah University, Baghdad/ Iraq

DOI:

https://doi.org/10.36320/ajb/v15.i3.13211

Keywords:

angiogenesis, cytotoxic, IC50, Neoplasms and viability

Abstract

Abstract 

Tumor development is a complex process involving abnormal cell proliferation within an organism. This study aims to understand tumors, their categorization, formation methods, and effects on human health. Tumor growth is influenced by genetic, environmental, and lifestyle factors. Dextran, a glucose-based polysaccharide, has been used in medical applications for blood plasma substitutes and antithrombotic agents. Researchers are interested in its potential therapeutic applications due to its biocompatibility and unique properties. Dextransucrase, a glucosyltransferase, plays a vital role in synthesizing glucan polymers. Advancements in cancer research reveal the nuanced roles of biopolymers like dextran in tumor biology, drug delivery, and cancer therapy. 

In this study MCF-7 cell line maintained in MEM, reseeded twice a week, incubated at 37°C. The MTT cell viability assay was conducted on 96-well plates to assess cytotoxic effects. Cell lines were seeded, treated with the tested compound, and measured after 72 hours. After solubilization, absorbency was determined using a microplate reader at 492 nm. 

The results showed A decrease in cell viability was observed with decreasing Dextran concentration, with a negative correlation between concentration and cell viability. A P-value of 0.001 indicates statistically significant effects on MCF-7 cell cytotoxicity, rejecting the null hypothesis that Dextran has no effect. Dextransucrase exhibited a dose-dependent cytotoxicity effect on MCF-7 cells, with a significant effect at the highest concentration (1000) and a negative correlation at the lowest concentration (31.25). The P-value of 0.001 was below the 0.05 threshold, rejecting the null hypothesis. According to the results of cell viability, the highest concentration (1000) had the lowest viability, while the lowest concentration (31.25) had the highest. The data supports the cytotoxic potential of Dextransucrase in a dose-dependent manner.

Downloads

Download data is not yet available.

References

R. Baghban, L. Roshangar, R. Jahanban-Esfahlan, K. Seidi, A. Ebrahimi-Kalan, M. Jaymand, S. Kolahian, T. Javaheri, P. Zare, Cell Communication and Signaling 2020 18:1 18 (2020) 1–19. DOI: 10.1186/S12964-020-0530-4 DOI: https://doi.org/10.1186/s12964-020-0530-4

J. Fares, M.Y. Fares, H.H. Khachfe, H.A. Salhab, Y. Fares, Signal Transduct Target Ther 5 (2020). DOI: 10.1038/S41392-020-0134-X DOI: https://doi.org/10.1038/s41392-020-0134-x

A. Maitra, Nature 567 (2019) 181–182. DOI: 10.1038/D41586-019-00710-Z DOI: https://doi.org/10.1038/d41586-019-00710-z

H. Zhao, L. Wu, G. Yan, Y. Chen, M. Zhou, Y. Wu, Y. Li, Signal Transduction and Targeted Therapy 2021 6:1 6 (2021) 1–46. DOI: 10.1038/s41392-021-00658-5 DOI: https://doi.org/10.1038/s41392-021-00658-5

J. Massagué, A.C. Obenauf, Nature 529 (2016) 298–306. DOI: 10.1038/NATURE17038 DOI: https://doi.org/10.1038/nature17038

A.R. Petrovici, M. Pinteala, N. Simionescu, Molecules 28 (2023). DOI: 10.3390/MOLECULES28031086 DOI: https://doi.org/10.3390/molecules28031086

Z. Xie, W. Liang, Q. Xiong, Y. Zhao, J. Cheng, X. Li, J. Zhao, Carbohydr Polym 291 (2022). DOI: 10.1016/J.CARBPOL.2022.119576 DOI: https://doi.org/10.1016/j.carbpol.2022.119576

by A. Nathan Jones, M.M. Banaszak Holl Steven Bloembergen, G.H. Biomedical Professor Emeritus Brian Clarkson Professor Jinsang Kim, (n.d.).

M.M. Vantangoli, S.J. Madnick, S.M. Huse, P. Weston, K. Boekelheide, PLoS One 10 (2015). DOI: 10.1371/JOURNAL.PONE.0135426 DOI: https://doi.org/10.1371/journal.pone.0135426

N. Bajalovic, Y.Z. Or, A.R.E. Woo, S.H. Lee, V.C.L. Lin, Biomedicines 10 (2022). DOI: 10.3390/BIOMEDICINES10081860/S1 DOI: https://doi.org/10.3390/biomedicines10081860

N.T. Telang, International Journal of Molecular Sciences 2022, Vol. 23, Page 4800 23 (2022) 4800. DOI: 10.3390/IJMS23094800 DOI: https://doi.org/10.3390/ijms23094800

D.J. Konieczkowski, C.M. Johannessen, L.A. Garraway, Cancer Cell 33 (2018) 801–815. DOI: 10.1016/J.CCELL.2018.03.025 DOI: https://doi.org/10.1016/j.ccell.2018.03.025

M. Szostakowska, A. Trębińska-Stryjewska, E.A. Grzybowska, A. Fabisiewicz, Breast Cancer Res Treat 173 (2019) 489–497. DOI: 10.1007/S10549-018-5023-4 DOI: https://doi.org/10.1007/s10549-018-5023-4

F. Ghaffari, M. Bahmanzadeh, A. Nili-Ahmadabadi, F. Firozian, Asian Pac J Cancer Prev 19 (2018) 2651–2655. DOI: 10.22034/APJCP.2018.19.9.2651

J. Varshosaz, F. Hassanzadeh, H. Sadeghi, F. Firozian, M. Mirian, J Nanomater 2012 (2012). DOI: 10.1155/2012/265657 DOI: https://doi.org/10.1155/2012/265657

K. Joyce, G.T. Fabra, Y. Bozkurt, A. Pandit, Signal Transduction and Targeted Therapy 2021 6:1 6 (2021) 1–28. DOI: 10.1038/s41392-021-00512-8 DOI: https://doi.org/10.1038/s41392-021-00512-8

T. Hillman, Front Oncol 13 (2023) 1194350. DOI: 10.3389/FONC.2023.1194350/BIBTEX

E. Lukášová, M. Řezáčová, A. Bačíková, L. Šebejová, J. Vávrová, S. Kozubek, FEBS Open Bio 9 (2019) 870. DOI: 10.1002/2211-5463.12632 DOI: https://doi.org/10.1002/2211-5463.12632

P. Ferraboschi, S. Ciceri, P. Grisenti, Antibiotics 10 (2021). DOI: 10.3390/ANTIBIOTICS10121534 DOI: https://doi.org/10.3390/antibiotics10121534

M.S. Khan, B.H.J. Gowda, N. Nasir, S. Wahab, M.R. Pichika, A. Sahebkar, P. Kesharwani, Int J Pharm 643 (2023) 123276. DOI: 10.1016/J.IJPHARM.2023.123276 DOI: https://doi.org/10.1016/j.ijpharm.2023.123276

J. Ma, D.J. Waxman, Mol Cancer Ther 7 (2008) 3670. DOI: 10.1158/1535-7163.MCT-08-0715 DOI: https://doi.org/10.1158/1535-7163.MCT-08-0715

N. Barzkar, O. Babich, R. Das, S. Sukhikh, S. Tamadoni Jahromi, M. Sohail, Molecules 27 (2022). DOI: 10.3390/MOLECULES27175533 DOI: https://doi.org/10.3390/molecules27175533

Downloads

Published

2023-12-31

Versions

How to Cite

Yasameen Hasan Ali, Nosaif, S., & Husain Hamza, A. (2023). Assessing the Efficacy of Dextran and Dextransucrase in Modulating MCF-7 Breast Cancer Cell Activity. Al-Kufa University Journal for Biology, 15(3), 20–27. https://doi.org/10.36320/ajb/v15.i3.13211