Assessment of Thrombospondin-1 Level in Type II Diabetic Patients

Authors

  • Wijdan Rajh Hamza Al-Kraity
  • Arshad Noori Ghani Al-Dugaili

DOI:

https://doi.org/10.36320/ajb/v7.i1.8097

Keywords:

Fasting blood glucose ,Thrombospondin-1, Type II diabetic patients.

Abstract

    The study is intended to asses serum levels of Thrombospondin-1, fasting blood glucose  in type 2 diabetic patients, also  correlation between   Thrombospondin-1 in both males and females.

     The study was conducted on randomly selected 65 type 2 diabetic patients (34 males and 31 females) attending the diabetes mellitus center in Al-Sadder Teaching City in Al- Najaf province , Iraqi and a group of  24 apparently healthy subjects (12 Males and 12 Females) were included as a control group .  The Study was carried out from August 2013 to February 2014.The patients' age was  ranging  from 35 to 64 years old.

      The results indicated a significant increase (p<0.05) in serum  FBG and TSP-1 levels in diabetic patients in comparing with healthy groups.

     The results  also revealed no significant differences (p> 0.05)  in serum TSP-1 levels  between  males and females in both patients and  healthy groups, while the results of FBG levels  significantly (p<0.05) increase in females than males in both patients and healthy groups.

    The results have been shown significant positive correlation (P<0.05) between TSP-1 and FBG in (males and females), males, females DM patients.

    The present study concluded that  Thrombospondin-1 were marker for detection and diagnosis of diabetic patients type 2.

Downloads

Download data is not yet available.

References

Canadian Diabetes Association (CDA). (2008). Clinical Practice Guideline for the Prevention and Management of Diabetes in Canada. Canad. J. Diabet., 32(1):S1-S201.

Alemzadeh, R. ;Wyatt, D.T.; Behrman, R.E.; Kliegman, R.M. and Jenson, H.B. (2008). Diabetes mellitus in children. Nelson Textbook of Pediatrics. 18th ed. Philadelphia: Saunders., PP : 2404-31.

Thabrew, I. and Ayling, R.M. (2001). Biochemistry for clinical Medicine. 1st ed. Green wich Medical Media ttd. London. Pp.166-167.

Leahy; Jack, L. and William, T. (2002). insulin Therapy. 1st ed. New York: Marcel Dekker. ISBN.0-8247-0711-7. DOI: https://doi.org/10.1201/b14038

Qian, X.; Tuszynski, G.P.(1996). Expression of thrombospondin-1 in cancer: A role in tumor progression. Proc. Soc. Exp. Biol. Med., 212: 199–207. DOI: https://doi.org/10.3181/00379727-212-44008

Taraboletti, G.; Roberts, D.D.; Liotta, L.A.; Giavazzi, R.(1990). Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: A potential angiogenesis regulatory factor. J. Cell Biol., 111: 765–772. DOI: https://doi.org/10.1083/jcb.111.2.765

Tolsma, S.S.; Stack, M.S.; Bouck, N.(1997). Lumen formation and other angiogenic activities of cultured capillary endothelial cells are inhibited by thorombospondin-1. Microvasc. Res., 54:13–26. DOI: https://doi.org/10.1006/mvre.1997.2015

Jimenez, B.; Volpert, O.V.; Crawford, S.E.; Febbraio, M.; Silverstein, R.L. and Bouck, N. (2000). Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med., 6: 41-48. DOI: https://doi.org/10.1038/71517

Lawler, J. (2002). Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell Mol. Med., 6:1-12. DOI: https://doi.org/10.1111/j.1582-4934.2002.tb00307.x

Armstrong, L.C.; Bormstein, P.(2003). Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol., 22: 63–71. DOI: https://doi.org/10.1016/S0945-053X(03)00005-2

Adams, J.C., and Lawler, J. (2004). The thrombospondins. Int. J. Biochem. Cell Biol., 36:961-968. DOI: https://doi.org/10.1016/j.biocel.2004.01.004

Lawler, J.(2000). The functions of TSP-1 and TSP-2. Curr. Opin. Cell Biol., 12: 634–650. DOI: https://doi.org/10.1016/S0955-0674(00)00143-5

Isenberg, J.S.; Martin-Manso, G.; Maxhimer, J.B.; Roberts, D.D. (2009).Regulation of nitric oxide signaling by thrombospondin-1: Implications for anti-angiogenic therapies. Nat. Rev. Cancer, 9: 182–194. DOI: https://doi.org/10.1038/nrc2561

Reed, M.J.; Puolakkainen, P.; Lane, T.F.; Dickerson, D.; Bornstein, P.; Sage, E.H.(1993). Different expression of SPARC and thrombospondin-1 in wound repair. Immunolocalization and in situ hybridization. J. Histochem. Cytochem., 41: 1467–1477. DOI: https://doi.org/10.1177/41.10.8245406

Bauer, E.M. ; Qin, Y.; Miller, T.W. ; Bandle, R.W. ; Csanyi, G. ; Pagano, P.J. ; Bauer, P.M. ; Schnermann, J. ; Roberts, D.D. ; Isenberg, J.S. (2010).Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc. Res., 88:471–481. DOI: https://doi.org/10.1093/cvr/cvq218

Lopez-Dee, Z.; Pidcock, K.; Gutierrez, L.S. (2011). Thrombospondin-1: Multiple paths to inflammation. Mediators Inflamm.,1-10. DOI: https://doi.org/10.1155/2011/296069

Al-Rawi, K.(2000). Entrance to the Statistics. Second edition. Faculty of Agriculture and Forestry, University of Mosul.

National Diabetes Information Clearinghouse (NDIC).(2008). National Diabetes Statistics.

Ismail, B.H.(2010). Comparison Study of insulin level and lipid profile in diabetes mellitus in Ramadi city. J. of university of Anbar for pure .sci.,4(2):1-3. DOI: https://doi.org/10.37652/juaps.2010.43916

Paz ,V. ; Elena , L. and Marcia, H. (2006).Sexual dimorphism in insulin sensitivity and susceptibility to develop diabetes in rats. J. End., 190:425-432. DOI: https://doi.org/10.1677/joe.1.06596

Khan, H.A. (2006). Clinical significance of HbA1c as a marker of circulating lipids in male and female type 2 diabetic patients. Acta. Diabet.,1-8.

Haffner, S.M.; Lehto, S.; Ronnemaa, T.; Pyorala, K.; Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med., 339:229–234. DOI: https://doi.org/10.1056/NEJM199807233390404

Gu, K. ; Cowie, C.C. and Harris, M.I. (1999). Diabetes and decline in heart disease mortality in US adults. JAMA., 281:1291–1297. DOI: https://doi.org/10.1001/jama.281.14.1291

Steinberg, H.O.; Paradisi, G.; Cronin, J.; Crowde, K. ; Hempfling, A. ;Hook, G. and Baron, A.D. (2000). Type II diabetes abrogates sex differences in endothelial function in pre-menopausal women. Circul., 101:2040–2046. DOI: https://doi.org/10.1161/01.CIR.101.17.2040

Stenina, O.I.; Krukovets, I.; Wang, K.; Zhou, Z.; Forudi, F.; Penn, M.S. et al.(2003). Increased expression of thrombospondin-1 in vessel wall of diabetic Zucker rat. Circul, 107:3209-15. DOI: https://doi.org/10.1161/01.CIR.0000074223.56882.97

Kong, P.; Gonzalez-Quesada, C.; Li, N.; Cavalera, M.; Lee, D.W. and Frangogiannis, N.G.(2013a). Thrombospondin-1 regulates adiposity and metabolic dysfunction in dietinduced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am. J. Physiol. Endocrinol. Metab., 305:E439-50. DOI: https://doi.org/10.1152/ajpendo.00006.2013

Raman, P.; Krukovets, I.; Marinic, T.E.; Bornstein, P. and Stenina, O.I.(2007).Glycosylation mediates up-regulation of a potent antiangiogenic and proatherogenic protein, thrombospondin-1, by glucose in vascular smooth muscle cells. J. Biol. Chem., 282:5704-14. DOI: https://doi.org/10.1074/jbc.M610965200

Raman, P.; Harry, C.; Weber, M.; Krukovets, I. and Stenina, O.I.(2011). A novel transcriptional mechanism of cell type specific regulation of vascular gene expression by glucose. Arterioscler. Thromb. Vasc. Biol., 31: 634-42. DOI: https://doi.org/10.1161/ATVBAHA.110.219675

Yung, S. ; Candice, Y.Y. ; Lee, Y. ; Zhang, L. Q. ; Lau, S.K. ; Tsang, R.C.W. and Chan, T.M. (2006). Elevated glucose induction of thrombospondin-1 up-regulates fibronectin synthesis in proximal renal tubular epithelial cells through TGF-b1 dependent and TGF-b1 independent pathways. Nephrol. Dial. Transplant, 21: 1504–1513. DOI: https://doi.org/10.1093/ndt/gfl017

Tang, M. ; Zhou, F. ; Zhang, W. ; Guo, Z. ;Shang Y. ; Lu, H. ; Lu, R. ; Zhang, Y. ; Chen, Y. and Zhong, M. (2011).The role of thrombospondin1-mediated TGF-b1 on collagen type III synthesis induced by high glucose. Mol.Cell. Biochem., 346:49–56. DOI: https://doi.org/10.1007/s11010-010-0590-7

Murphy-Ullrich, J.E. and Poczatek, M.(2000). Activation of latent TGF-beta by thrombospondin1: mechanisms and physiology. Cytok. Grow. Fact. Rev., 11: 59–69. DOI: https://doi.org/10.1016/S1359-6101(99)00029-5

Yevdokimova, N. ; Wahab, N.A. and Mason, R.M.(2001). Thrombospondin-1 is the key activator of TGF-b1 in human mesangial cells exposed to high glucose. J. Am. Soc. Nephrol., 12: 703–712. DOI: https://doi.org/10.1681/ASN.V124703

Kong, P. ; Cavalera, M. and Frangogiannis, N.G.(2013b). The role of thrombospondin-1 (TSP-1) in obesity and diabetes. Adipocyte , 3:1:1-4. DOI: https://doi.org/10.4161/adip.26990

Sheibani, N.; Sorenson, C.M.; Cornelius, L.A. and Frazier, W.A. (2000). Thrombospondin-1, a natural inhibitor of angiogenesis, is present in vitreous and aqueous humor and is modulated by hyperglycemia. Biochem. Biophys. Res. Commun., 267: 257-261. DOI: https://doi.org/10.1006/bbrc.1999.1903

Wang, S.; Gottlieb, J.L. ; Sorenson, C.M. and Sheibani, N. (2009). Modulation of thrombospondin-1 and pigment epithelium-derived factor levels in vitreous fluid of patients with diabetes. Arch. Ophthalmol., 127: 507-513. DOI: https://doi.org/10.1001/archophthalmol.2009.53

Varma, V.; Yao-Borengasser, A.; Bodles, A.M.; Rasouli, N.; Phanavanh, B. et al.(2008). Thrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance. Diabet., 57: 432–439. DOI: https://doi.org/10.2337/db07-0840

Li ,Y. ; Tong, X. ; Rumala, C. ; Clemons, K. and Wang, S. (2011). Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model. PLoS. One. , 6: e26656. DOI: https://doi.org/10.1371/journal.pone.0026656

Voros, G. and Lijnen, H.R. (2006). Deficiency of thrombospondin-1 in mice does not affect adipose tissue development. J. Thromb. Haemost., 4: 277–278. DOI: https://doi.org/10.1111/j.1538-7836.2005.01696.x

Winzer, C. ;Wagner, O.; Festa, A. et al.(2004). Plasma adiponectin, insulin sensitivity, and subclinical inflammation in women with prior gestational diabetes mellitus. Diabet. Care, 27: 1721-7. DOI: https://doi.org/10.2337/diacare.27.7.1721

Belmadani, S.; Bernal, J.; Wei, C.C.; Pallero, M.A.; Dell’italia, L.; Murphy-Ullrich, J.E. and Berecek, K.H. (2007). A thrombospondin-1antagonist of transforming growth factor-beta activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am. J. Pathol., 171(3):777–789. DOI: https://doi.org/10.2353/ajpath.2007.070056

Ramis, J.M.;Franssen-van Hal, N.L.; Kramer, E.; Llado, I.; Bouillaud, F. et al. (2002).Carboxypeptidase E and thrombospondin-1 are differently expressed in subcutaneous and visceral fat of obese subjects. Cell. Mol. Life Sci., 59: 1960- 1971. DOI: https://doi.org/10.1007/PL00012518

Hajri , T.; Han ,X.X.; Bonen, A. and Abumrad, N.A.(2002). Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J. Clin. Invest., 109:1381-9. DOI: https://doi.org/10.1172/JCI0214596

Hajri, T.; Hall, A.M.; Jensen, D.R.; Pietka, T.A.; Drover, V.A.; Tao, H.; Eckel, R. and Abumrad, N.A.(2007). CD36-facilitated fatty acid uptake inhibits leptin production and signaling in adipose tissue. Diabet., 56: 1872-80. DOI: https://doi.org/10.2337/db06-1699

Hida, K.; Wada, J.; Zhang, H.; Hiragushi, K.; Tsuchiyama, Y.; Shikata, K. and Makino, H.(2000). Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. J. Lipid Res., 41:1615–1622. DOI: https://doi.org/10.1016/S0022-2275(20)31994-5

Wahab, N.A.; Schaefer, L.; Weston, B.S. et al.(2005).Glomerular expression of thrombospondin-1, transforming growth factor beta and connective tissue growth factor at different stages of diabetic nephropathy and their interdependent roles in mesangial response to diabetic stimuli. Diabet., 48: 2650–2660. DOI: https://doi.org/10.1007/s00125-005-0006-5

Maier, G.M. ; HAN, X. ; Sadowitz, B.; Gentile, K.L.; Middleton, F.A. and Gahton, V. (2009). Thrombospondin-1: A proatherosclerotic protein augmented by hyperglycemia. J. Vas. Surg., 51(5):1238-1247. DOI: https://doi.org/10.1016/j.jvs.2009.11.073

Adams, J.C. (1997). Thrombospondin-1. Int. J. Biochem. Cell. Biol., 29: 861-865. DOI: https://doi.org/10.1016/S1357-2725(96)00171-9

Maile, L. A.; Capps, B. E.; Miller, E. C. ; Aday, A. W. and Clemmons, D. R. (2008). “Integrin-associated protein association with src homology 2 domain containing tyrosine phosphatase substrate 1 regulates IGF-i signaling in vivo,” Diabet ., 57(10): 2637–2643. DOI: https://doi.org/10.2337/db08-0326

Chen, H.; Sottile, J. ; Strickland, D. K. and Mosher, D. F. (1996a). Binding and degradation of thrombospondin-1 mediated through heparan sulphate proteoglycans and low-densitylipoprotein receptor-related protein: localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Biochem. J., 318(3): 959–963. DOI: https://doi.org/10.1042/bj3180959

Chen, H. ; Strickland, D. K. and Mosher, D. F.(1996b). Metabolism of thrombospondin-2: binding and degradation by 3T3 cells and glycosaminoglycan-variant Chinese hamster ovary cells. J . Biol. Chem., 271 (27):15993– 15999. DOI: https://doi.org/10.1074/jbc.271.27.15993

Hong, H. ; Liu, L. P. ; Liao, J. M. et al.(2009). Downregulation of LPR1 at the blood-brain barrier in streptozotocin-induced diabetic mice. Neuropharmacol ., 56(6-7) 1054–1059. DOI: https://doi.org/10.1016/j.neuropharm.2009.03.001

Downloads

Published

2015-04-01

How to Cite

Al-Kraity, W. R. H., & Al-Dugaili, A. N. G. (2015). Assessment of Thrombospondin-1 Level in Type II Diabetic Patients. Al-Kufa University Journal for Biology, 7(1), 1–14. https://doi.org/10.36320/ajb/v7.i1.8097

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.