Modules in which every surjective endomorphism has an e-small kernel


  • osama mohammed Department of Mathematics, College of Education, University of Al-Qadisiyah
  • Thaar Younis Ghawi University of Al-Qadisiyah



Hopfian module, generalized Hopfian module, e-small submodule , e-gH module.


In this paper we introduce the notion of e-gH modules which is a proper generalization of Hopfian modules and defined as, a module  is called e-gH if, any surjective -endomorphism  of  has an e-small kernel, a ring  is called e-gH if,  is e-gH. We give some characterizations and properties of this modules.


Download data is not yet available.


M.S. Abbas, On fully stable modules, Ph.D. Thesis, Univ. of Baghdad, Iraq, 1990.

Sh. Asgari and A. Haghany, T-extending modules and t-Baer modules, Comm. Algebra 39(2011), 1605-1623 DOI:

J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, supplements and projectivity in module theory, Front. Math., Birkhäuser, Basel (2006).

F. Kasch, Modules and rings, 1982.

T.Y. Ghawi, Some generalizations of g-lifting modules, Quasigroups and Related Systems, 2022, to appear.

A. Ghorbani and A. Haghany, Generalized Hopfian modules, Journal of Algebra 255(2002), p. 324-341. DOI:

K. R. Goodearl, Ring theory, Nonsingular rings and modules, Dekker, Newyork, 1976.

V. A. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math. 17 (1986), p. 895-900.F. Kasch, Modules and rings module, 1982.

K. Varadarajan, Hopfian and co-Hopfian objects, Publ. Mat. 36 (1992), p. 293-317. DOI:

D.X. Zhou, and X.R. Zhang, small-essential submodule and morita duality, south-east Asian Bull. Math. 35(2011) 1051-1062




How to Cite

mohammed, osama, & Ghawi, T. Y. (2023). Modules in which every surjective endomorphism has an e-small kernel . Journal of Kufa for Mathematics and Computer, 10(1), 125–128.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.