TECHNOLOGY OF ADDITIVE MANUFACTURING: A COMPREHENSIVE REVIEW

Authors

  • Md. Imam Hossain Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh.
  • Md. Sakib Khan Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh https://orcid.org/0009-0000-2092-6781
  • Imrul Kayes Khan Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh https://orcid.org/0009-0007-8848-6488
  • Khan Rajib Hossain State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China https://orcid.org/0000-0001-5199-1682
  • Yanzhao He College of Chemical Engineering, Northwest Minzu University, Gansu Lanzhou, 730030, China
  • Xiaolong Wang PhD Professor Chinese Academy of Sciences, Lanzhou, China. https://orcid.org/0000-0003-4210-840X

DOI:

https://doi.org/10.30572/2018/kje/150108

Keywords:

Additive Manufacturing, Photopolymerization, 3D printing, Applications, Challenges

Abstract

The process of additive manufacturing (AM), commonly known as 3D printing, is a method of constructing a component by progressively adding material in layers using digital 3D design information. As part of 'Industry 4.0,' many industrial technologies are rapidly increasing to thrive in the twenty-first century. This study goes over seven different types of additive manufacturing in great detail. These technologies make it possible to make complex, high-value parts quickly and in small quantities without using as much energy or material or making as many tools as subtractive manufacturing does. Besides, AM also possesses some particular challenges, like post-processing, material unavailability, software issues, etc. The application of AM is expanding rapidly from micro to macro-scale sectors. 3D printing technology will change industrial operations in the following years. Eventually, the elected technology will be closely related to the proposed function.

Downloads

Download data is not yet available.

Author Biographies

Md. Imam Hossain, Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh.

MSc Candidate, Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh.

Md. Sakib Khan, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh

MSc Candidate

Imrul Kayes Khan, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh

MSc Candidate

Khan Rajib Hossain, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

PhD Candidate, Material Science, University of Chinese Academy of Sciences, Beijing, China.

Yanzhao He, College of Chemical Engineering, Northwest Minzu University, Gansu Lanzhou, 730030, China

Master's Student

Xiaolong Wang, PhD Professor Chinese Academy of Sciences, Lanzhou, China.

Full Professor & PhD Supervisor

*Corresponding Author & Email: wangxl@licp.cas.cn

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

References

Azam, F. I., Abdul Rani, A. M., Altaf, K., Rao, T., & Zaharin, H. A. (2018). An In-Depth Review on Direct Additive Manufacturing of Metals. IOP Conference Series: Materials Science and Engineering, 328, 012005. doi.org/10.1088/1757-899x/328/1/012005 DOI: https://doi.org/10.1088/1757-899X/328/1/012005

Castelvecchi, D. (2019). Forget everything you know about 3D printing — the ‘replicator’ is here. Nature, 566(7742), 17–17. doi.org/10.1038/d41586-018-07798-9 DOI: https://doi.org/10.1038/d41586-018-07798-9

Cheah, C. M., Chua, C. K., Lee, C. W., Feng, C., & Totong, K. (2005). Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. The International Journal of Advanced Manufacturing Technology, 25, 308-320. doi.org/10.1007/s00170-003-1840-6. DOI: https://doi.org/10.1007/s00170-003-1840-6

Chen, L., He, Y., Yang, Y., Niu, S., & Ren, H. (2017). The research status and development trend of additive manufacturing technology. The International Journal of Advanced Manufacturing Technology, 89, 3651-3660. doi.org/10.1007/s00170-016-9335-4 DOI: https://doi.org/10.1007/s00170-016-9335-4

Guo, N., & Leu, M. C. (2013). Additive manufacturing: technology, applications and research needs. Frontiers of mechanical engineering, 8, 215-243. doi.org/10.1007/s11465-013-0248-8. DOI: https://doi.org/10.1007/s11465-013-0248-8

Horn, T. J., & Harrysson, O. L. (2012). Overview of current additive manufacturing technologies and selected applications. Science progress, 95(3), 255-282. doi.org/10.3184/003685012X13420984463047. DOI: https://doi.org/10.3184/003685012X13420984463047

Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2013). Additive manufacturing and its societal impact: a literature review. The International journal of advanced manufacturing technology, 67, 1191-1203. doi.org/10.1007/s00170-012-4558-5. DOI: https://doi.org/10.1007/s00170-012-4558-5

Rosa, E. L. S. D., Oleskovicz, C. F., & Aragao, B. N. (2004). Rapid prototyping in maxillofacial surgery and traumatology. Brazilian Dental Journal, 15, 243-247. doi.org/10.1590/S0103-64402004000300015. DOI: https://doi.org/10.1590/S0103-64402004000300015

Negi, S., Dhiman, S., & Sharma, R. K. (2013). Basics, applications and future of additive manufacturing technologies: A review. Journal of Manufacturing Technology Research, 5(1/2), 75.

Herderick, E. D. (2015). Progress in additive manufacturing. Jom, 67(3), 580-581. doi.org/10.1007/s11837-015-1323-x. DOI: https://doi.org/10.1007/s11837-015-1323-x

Yang, S., & Zhao, Y. F. (2015). Additive manufacturing-enabled design theory and methodology: a critical review. The International Journal of Advanced Manufacturing Technology, 80, 327-342. doi.org/10.1007/s00170-015-6994-5. DOI: https://doi.org/10.1007/s00170-015-6994-5

Frazier, W. E. (2014). Metal additive manufacturing: a review. Journal of Materials Engineering and performance, 23, 1917-1928. doi.org/10.1007/s11665-014-0958-z. DOI: https://doi.org/10.1007/s11665-014-0958-z

Guessasma, S., Zhang, W., Zhu, J., Belhabib, S., & Nouri, H. (2015). Challenges of additive manufacturing technologies from an optimisation perspective. International Journal for Simulation and Multidisciplinary Design Optimization, 6, A9. doi.org/10.1051/smdo/2016001. DOI: https://doi.org/10.1051/smdo/2016001

Tang, H. H., & Yen, H. C. (2015). Slurry-based additive manufacturing of ceramic parts by selective laser burn-out. Journal of the European Ceramic Society, 35(3), 981-987. doi.org/10.1016/j.jeurceramsoc.2014.10.019. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.10.019

Gaytan, S. M., Cadena, M. A., Karim, H., Delfin, D., Lin, Y., Espalin, D., ... & Wicker, R. B. (2015). Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceramics International, 41(5), 6610-6619. doi.org/10.1016/j.ceramint.2015.01.108. DOI: https://doi.org/10.1016/j.ceramint.2015.01.108

Guessasma, S., Belhabib, S., & Nouri, H. (2015). Significance of pore percolation to drive anisotropic effects of 3D printed polymers revealed with X-ray μ-tomography and finite element computation. Polymer, 81, 29-36. doi.org/10.1016/j.polymer.2015.10.041. DOI: https://doi.org/10.1016/j.polymer.2015.10.041

Quan, Z., Wu, A., Keefe, M., Qin, X., Yu, J., Suhr, J., ... & Chou, T. W. (2015). Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Materials Today, 18(9), 503-512. doi.org/10.1016/j.mattod.2015.05.001. DOI: https://doi.org/10.1016/j.mattod.2015.05.001

Lee, J. S., Cha, H. D., Shim, J. H., Jung, J. W., Kim, J. Y., & Cho, D. W. (2012). Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication‐based scaffold for bone tissue engineering. Journal of Biomedical Materials Research Part A, 100(7), 1846-1853. doi.org/10.1002/jbm.a.34149. DOI: https://doi.org/10.1002/jbm.a.34149

Takezawa, A., Kobashi, M., & Kitamura, M. (2015). Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing. APL Materials, 3(7). doi.org/10.1063/1.4926759. DOI: https://doi.org/10.1063/1.4926759

Hossain, K. R., Lyu, Y., Yao, X., Yang, Y., Jiang, P., & Wang, X. (2023). Tribological and mechanical properties of fabricated soft materials with a podium mesostructured. Tribology International, 187, 108673. doi.org/10.1016/j.triboint.2023.108673 DOI: https://doi.org/10.1016/j.triboint.2023.108673

Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 117(15), 10212–10290. doi.org/10.1021/acs.chemrev.7b00074 DOI: https://doi.org/10.1021/acs.chemrev.7b00074

Kumar, V., & Dutta, D. (1997). An assessment of data formats for layered manufacturing. Advances in Engineering Software, 28(3), 151–164. doi.org/10.1016/s0965-9978(96)00050-6 DOI: https://doi.org/10.1016/S0965-9978(96)00050-6

Griffiths, C., Howarth, J., De Almeida-Rowbotham, G., Rees, A., & Kerton, R. (2016). A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing. Journal of Cleaner Production, 139, 74–85. doi.org/10.1016/j.jclepro.2016.07.182 DOI: https://doi.org/10.1016/j.jclepro.2016.07.182

Rejeski, D., Zhao, F., & Huang, Y. (2018). Research needs and recommendations on environmental implications of additive manufacturing. Additive Manufacturing, 19, 21–28. doi.org/10.1016/j.addma.2017.10.019 DOI: https://doi.org/10.1016/j.addma.2017.10.019

Hossain, K. R., Jiang, P., Yao, X., Wu, J., Hu, D., Yang, X., ... & Wang, X. (2023). Additive Manufacturing of Polymer‐Based Lubrication. Macromolecular Materials and Engineering, 2300147. doi.org/10.1002/mame.202300147. DOI: https://doi.org/10.1002/mame.202300147

Jiang, J., & Fu, Y. F. (2020). A short survey of sustainable material extrusion additive manufacturing. Australian Journal of Mechanical Engineering, 21(1), 123–132. doi.org/10.1080/14484846.2020.1825045 DOI: https://doi.org/10.1080/14484846.2020.1825045

Crivello, J. V., & Reichmanis, E. (2013). Photopolymer Materials and Processes for Advanced Technologies. Chemistry of Materials, 26(1), 533–548. doi.org/10.1021/cm402262g DOI: https://doi.org/10.1021/cm402262g

Pagac, M., Hajnys, J., Ma, Q. P., Jancar, L., Jansa, J., Stefek, P., & Mesicek, J. (2021). A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers, 13(4), 598. doi.org/10.3390/polym13040598 DOI: https://doi.org/10.3390/polym13040598

Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J. P., Ermoshkin, A., Samulski, E. T., & DeSimone, J.

M. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349–1352. doi.org/10.1126/science.aaa2397 DOI: https://doi.org/10.1126/science.aaa2397

Huang, B., Hu, R., Xue, Z., Zhao, J., Li, Q., Xia, T., Zhang, W., & Lu, C. (2020). Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties. Carbohydrate Polymers, 231, 115736. doi.org/10.1016/j.carbpol.2019.115736 DOI: https://doi.org/10.1016/j.carbpol.2019.115736

Tesavibul, P., Felzmann, R., Gruber, S., Liska, R., Thompson, I., Boccaccini, A. R., & Stampfl, J. (2012, May). Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Materials Letters, 74, 81–84. doi.org/10.1016/j.matlet.2012.01.019 DOI: https://doi.org/10.1016/j.matlet.2012.01.019

Hossain, K. R., Jiang, P., Yao, X., Yang, X., Hu, D., & Wang, X. (2023). Ionic Liquids for 3D Printing: Fabrication, Properties, Applications. Journal of Ionic Liquids, 100066. doi.org/10.1016/j.jil.2023.100066. DOI: https://doi.org/10.1016/j.jil.2023.100066

Zheng, L., Kurselis, K., El-Tamer, A., Hinze, U., Reinhardt, C., Overmeyer, L., & Chichkov, B. (2019). Nanofabrication of High-Resolution Periodic Structures with a Gap Size Below 100 nm by Two-Photon Polymerization. Nanoscale Research Letters, 14(1). doi.org/10.1186/s11671-019-2955-5 DOI: https://doi.org/10.1186/s11671-019-2955-5

Zhao, Y., Zhu, J., He, W., Liu, Y., Sang, X., & Liu, R. (2023). 3D printing of unsupported multi-scale and large-span ceramic via near-infrared assisted direct ink writing. Nature Communications, 14(1), 2381. doi.org/10.1038/s41467-023-38082-8. DOI: https://doi.org/10.1038/s41467-023-38082-8

Saadi, M. A. S. R., Maguire, A., Pottackal, N. T., Thakur, M. S. H., Ikram, M. M., Hart, A. J., ... & Rahman, M. M. (2022). Direct ink writing: a 3D printing technology for diverse materials. Advanced Materials, 34(28), 2108855. doi.org/10.1002/adma.202108855. DOI: https://doi.org/10.1002/adma.202108855

Guo, C., Ge, W., & Lin, F. (2015). Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies. Engineering, 1(1), 124–130. doi.org/10.15302/j-eng-2015013 DOI: https://doi.org/10.15302/J-ENG-2015013

Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., Shindo, P. W., Medina, F. R., & Wicker, R. B. (2012). Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. Journal of Materials Science & Technology, 28(1), 1–14. doi.org/10.1016/s1005-0302(12)60016-4 DOI: https://doi.org/10.1016/S1005-0302(12)60016-4

Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2012). Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 57(3), 133–164. doi.org/10.1179/1743280411y.0000000014 DOI: https://doi.org/10.1179/1743280411Y.0000000014

Gaytan, S. M., Murr, L. E., Medina, F., Martinez, E., Lopez, M. I., & Wicker, R. B. (2009). Advanced metal powder based manufacturing of complex components by electron beam melting. Materials Technology, 24(3), 180–190. doi.org/10.1179/106678509x12475882446133 DOI: https://doi.org/10.1179/106678509X12475882446133

Körner, C. (2016). Additive manufacturing of metallic components by selective electron beam melting — a review. International Materials Reviews, 61(5), 361–377. doi.org/10.1080/09506608.2016.1176289 DOI: https://doi.org/10.1080/09506608.2016.1176289

Duda, T., & Raghavan, L. V. (2018). 3D metal printing technology: the need to re-invent design practice. AI & SOCIETY, 33(2), 241–252. doi.org/10.1007/s00146-018-0809-9 DOI: https://doi.org/10.1007/s00146-018-0809-9

Zhang, D., Sun, S., Qiu, D., Gibson, M. A., Dargusch, M. S., Brandt, M., Qian, M., & Easton, M. (2018). Metal Alloys for Fusion‐Based Additive Manufacturing. Advanced Engineering Materials, 20(5). doi.org/10.1002/adem.201700952 DOI: https://doi.org/10.1002/adem.201700952

Subhedar, P. (2018). Additive Manufacturing: A next gen fabrication. International Journal of Current Engineering and Technology, 8(01). doi.org/10.14741/ijcet.v8i01.10893 DOI: https://doi.org/10.14741/ijcet.v8i01.10893

Stavropoulos, P., & Foteinopoulos, P. (2018). Modelling of additive manufacturing processes: a review and classification. Manufacturing Review, 5, 2. doi.org/10.1051/mfreview/2017014 DOI: https://doi.org/10.1051/mfreview/2017014

Dev Singh, D., Mahender, T., & Raji Reddy, A. (2021). Powder bed fusion process: A brief review. Materials Today: Proceedings, 46, 350–355. doi.org/10.1016/j.matpr.2020.08.415 DOI: https://doi.org/10.1016/j.matpr.2020.08.415

Kok, Y., Tan, X., Wang, P., Nai, M., Loh, N., Liu, E., & Tor, S. (2018). Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials & Design, 139, 565–586. doi.org/10.1016/j.matdes.2017.11.021 DOI: https://doi.org/10.1016/j.matdes.2017.11.021

Bahnini, I., Rivette, M., Rechia, A., Siadat, A., & Elmesbahi, A. (2018). Additive manufacturing technology: the status, applications, and prospects. The International Journal of Advanced Manufacturing Technology, 97(1–4), 147–161. doi.org/10.1007/s00170-018-1932-y

Sélo, R. R., Catchpole-Smith, S., Maskery, I., Ashcroft, I., & Tuck, C. (2020). On the thermal conductivity of AlSi10Mg and lattice structures made by laser powder bed fusion. Additive Manufacturing, 34, 101214. doi.org/10.1016/j.addma.2020.101214 DOI: https://doi.org/10.1016/j.addma.2020.101214

Lu, Q., Nguyen, N., Hum, A., Tran, T., & Wong, C. (2020). Identification and evaluation of defects in selective laser melted 316L stainless steel parts via in-situ monitoring and micro computed tomography. Additive Manufacturing, 35, 101287. doi.org/10.1016/j.addma.2020.101287 DOI: https://doi.org/10.1016/j.addma.2020.101287

Zadi-Maad, A., Rohib, R., & Irawan, A. (2018). Additive manufacturing for steels: a review. IOP Conference Series: Materials Science and Engineering, 285, 012028. doi.org/10.1088/1757-899x/285/1/012028 DOI: https://doi.org/10.1088/1757-899X/285/1/012028

Gülcan, O., Günaydın, K., & Tamer, A. (2021). The State of the Art of Material Jetting—A Critical Review. Polymers, 13(16), 2829. doi.org/10.3390/polym13162829 DOI: https://doi.org/10.3390/polym13162829

Tino, R., Leary, M., Yeo, A., Kyriakou, E., Kron, T., & Brandt, M. (2020). Additive manufacturing in radiation oncology: a review of clinical practice, emerging trends and research opportunities. International Journal of Extreme Manufacturing, 2(1), 012003. doi.org/10.1088/2631-7990/ab70af. DOI: https://doi.org/10.1088/2631-7990/ab70af

Pilipović, A., Baršić, G., Katić, M., & Rujnić Havstad, M. (2020). Repeatability and Reproducibility Assessment of a PolyJet Technology Using X-ray Computed Tomography. Applied Sciences, 10(20), 7040. doi.org/10.3390/app10207040 DOI: https://doi.org/10.3390/app10207040

Quan, H., Zhang, T., Xu, H., Luo, S., Nie, J., & Zhu, X. (2020). Photo-curing 3D printing technique and its challenges. Bioactive Materials, 5(1), 110–115. doi.org/10.1016/j.bioactmat.2019.12.003 DOI: https://doi.org/10.1016/j.bioactmat.2019.12.003

Dilag, J., Chen, T., Li, S., & Bateman, S. A. (2019). Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies. Additive Manufacturing, 27, 167–174. doi.org/10.1016/j.addma.2019.01.009 DOI: https://doi.org/10.1016/j.addma.2019.01.009

Sireesha, M., Lee, J., Kranthi Kiran, A. S., Babu, V. J., Kee, B. B. T., & Ramakrishna, S. (2018). A review on additive manufacturing and its way into the oil and gas industry. RSC Advances, 8(40), 22460–22468. doi.org/10.1039/c8ra03194k DOI: https://doi.org/10.1039/C8RA03194K

Elkaseer, A., Chen, K. J., Janhsen, J. C., Refle, O., Hagenmeyer, V., & Scholz, S. G. (2022). Material jetting for advanced applications: A state-of-the-art review, gaps and future directions. Additive Manufacturing, 60, 103270. doi.org/10.1016/j.addma.2022.103270 DOI: https://doi.org/10.1016/j.addma.2022.103270

Li, M., Du, W., Elwany, A., Pei, Z., & Ma, C. (2020). Metal Binder Jetting Additive Manufacturing: A Literature Review. Journal of Manufacturing Science and Engineering, 142(9). doi.org/10.1115/1.4047430 DOI: https://doi.org/10.1115/1.4047430

Wang, Y., & Zhao, Y. F. (2017). Investigation of Sintering Shrinkage in Binder Jetting Additive Manufacturing Process. Procedia Manufacturing, 10, 779–790. doi.org/10.1016/j.promfg.2017.07.077 DOI: https://doi.org/10.1016/j.promfg.2017.07.077

Chen, H., & Zhao, Y. F. (2016). Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process. Rapid Prototyping Journal, 22(3), 527–538. doi.org/10.1108/rpj-11-2014-0149 DOI: https://doi.org/10.1108/RPJ-11-2014-0149

FRYKHOLM, R., TAKEDA, Y., ANDERSSON, B. G., & CARLSTRÖM, R. (2016). Solid State Sintered 3-D Printing Component by Using Inkjet (Binder) Method. Journal of the Japan Society of Powder and Powder Metallurgy, 63(7), 421–426. doi.org/10.2497/jjspm.63.421 DOI: https://doi.org/10.2497/jjspm.63.421

Utela, B., Storti, D., Anderson, R., & Ganter, M. (2008). A review of process development steps for new material systems in three dimensional printing (3DP). Journal of Manufacturing Processes, 10(2), 96–104. doi.org/10.1016/j.jmapro.2009.03.002 DOI: https://doi.org/10.1016/j.jmapro.2009.03.002

Meteyer, S., Xu, X., Perry, N., & Zhao, Y. F. (2014). Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes. Procedia CIRP, 15, 19–25. doi.org/10.1016/j.procir.2014.06.030 DOI: https://doi.org/10.1016/j.procir.2014.06.030

Gokuldoss, P. K., Kolla, S., & Eckert, J. (2017). Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines. Materials, 10(6), 672. doi.org/10.3390/ma10060672 DOI: https://doi.org/10.3390/ma10060672

Do, T., Kwon, P., & Shin, C. S. (2017). Process development toward full-density stainless steel parts with binder jetting printing. International Journal of Machine Tools and Manufacture, 121, 50–60. doi.org/10.1016/j.ijmachtools.2017.04.006 DOI: https://doi.org/10.1016/j.ijmachtools.2017.04.006

Nandwana, P., Elliott, A. M., Siddel, D., Merriman, A., Peter, W. H., & Babu, S. S. (2017). Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges☆. Current Opinion in Solid State and Materials Science, 21(4), 207-218. doi.org/10.1016/j.cossms.2016.12.002 DOI: https://doi.org/10.1016/j.cossms.2016.12.002

Mostafaei, A., Neelapu, S. H. V. R., Kisailus, C., Nath, L. M., Jacobs, T. D., & Chmielus, M. (2018, December). Characterizing surface finish and fatigue behavior in binder-jet 3D-printed nickel-based superalloy 625. Additive Manufacturing, 24, 200–209. doi.org/10.1016/j.addma.2018.09.012 DOI: https://doi.org/10.1016/j.addma.2018.09.012

Mirzababaei, S., & Pasebani, S. (2019). A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. MDPI. doi.org/10.3390/jmmp3030082 DOI: https://doi.org/10.3390/jmmp3030082

Ziaee, M., & Crane, N. B. (2019, August). Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, 781–801. doi.org/10.1016/j.addma.2019.05.031 DOI: https://doi.org/10.1016/j.addma.2019.05.031

Romedenne, M., Pillai, R., Kirka, M., & Dryepondt, S. (2020). High temperature air oxidation behavior of Hastelloy X processed by Electron Beam Melting (EBM) and Selective Laser Melting (SLM). Corrosion Science, 171, 108647. doi.org/10.1016/j.corsci.2020.108647 DOI: https://doi.org/10.1016/j.corsci.2020.108647

Galati, M. (2021). Electron beam melting process: A general overview. Additive Manufacturing, 277-301. doi.org/10.1016/B978-0-12-818411-0.00014-8 DOI: https://doi.org/10.1016/B978-0-12-818411-0.00014-8

Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A. L., Bose, S., Bandyopadhyay, A., Schoenung, J. M., Lavernia, E. J., & Eliaz, N. (2021). Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 49, 271–295. doi.org/10.1016/j.mattod.2021.03.020 DOI: https://doi.org/10.1016/j.mattod.2021.03.020

Greer, C., Nycz, A., Noakes, M., Richardson, B., Post, B., Kurfess, T., & Love, L. (2019) Introduction to the design rules for Metal Big Area Additive Manufacturing. (2019, February 25). Introduction to the Design Rules for Metal Big Area Additive Manufacturing - 27, 159-166. doi.org/10.1016/j.addma.2019.02.016 DOI: https://doi.org/10.1016/j.addma.2019.02.016

Heralić, A., Christiansson, A. K., & Lennartson, B. (2012). Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Optics and Lasers in Engineering, 50(9), 1230–1241. doi.org/10.1016/j.optlaseng.2012.03.016 DOI: https://doi.org/10.1016/j.optlaseng.2012.03.016

Rodrigues, T. A., Duarte, V., Miranda, R., Santos, T. G., & Oliveira, J. (2019). Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM). Materials, 12(7), 1121. doi.org/10.3390/ma12071121 DOI: https://doi.org/10.3390/ma12071121

Wysocki, B., Maj, P., Sitek, R., Buhagiar, J., Kurzydłowski, K., & Święszkowski, W. (2017). Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants. Applied Sciences, 7(7), 657. doi.org/10.3390/app7070657 DOI: https://doi.org/10.3390/app7070657

Selema, A., Ibrahim, M. N., & Sergeant, P. Metal Additive Manufacturing for Electrical Machines: Technology Review and Latest Advancements. Energies 2022, 15, 1076. doi.org/10.3390/en15031076. DOI: https://doi.org/10.3390/en15031076

Reichardt, A., Dillon, R. P., Borgonia, J. P., Shapiro, A. A., McEnerney, B. W., Momose, T., & Hosemann, P. (2016). Development and characterization of Ti-6Al-4V to 304L stainless steel gradient components fabricated with laser deposition additive manufacturing. Materials & Design, 104, 404-413. doi.org/10.1016/j.matdes.2016.05.016. DOI: https://doi.org/10.1016/j.matdes.2016.05.016

Obikawa, T., Yoshino, M., & Shinozuka, J. (1999). Sheet steel lamination for rapid manufacturing. Journal of Materials Processing Technology, 89–90, 171–176. doi.org/10.1016/s0924-0136(99)00027-8 DOI: https://doi.org/10.1016/S0924-0136(99)00027-8

Stefaniak, A., Du Preez, S., & Du Plessis, J. (2021). Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures. Journal of Toxicology and Environmental Health, Part B, 24(5), 173–222. doi.org/10.1080/10937404.2021.1936319 DOI: https://doi.org/10.1080/10937404.2021.1936319

Srinivas, M., & Babu, B. S. (2017). A critical review on recent research methodologies in additive manufacturing. Materials Today: Proceedings, 4(8), 9049-9059. doi.org/10.1016/j.matpr.2017.07.258 DOI: https://doi.org/10.1016/j.matpr.2017.07.258

Sonmez, F. O., & Hahn, H. T. (1998). Thermomechanical analysis of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal, 4(1), 26–36. doi.org/10.1108/13552549810197541 DOI: https://doi.org/10.1108/13552549810197541

Mekonnen, B. G., Bright, G., & Walker, A. (n.d.) (2016). A Study on State of the Art Technology of Laminated Object Manufacturing (LOM). 28th International Conference on CARs & FoF 2016 (pp. 207-216). doi.org/10.1007/978-81-322-2740-3_21 DOI: https://doi.org/10.1007/978-81-322-2740-3_21

Chiu, Y., Liao, Y., & Hou, C. (2003). Automatic fabrication for bridged laminated object manufacturing (LOM) process. Journal of Materials Processing Technology, 140(1–3), 179–184. doi.org/10.1016/s0924-0136(03)00710-6 DOI: https://doi.org/10.1016/S0924-0136(03)00710-6

Ahn, D., Kweon, J. H., Choi, J., & Lee, S. (2012). Quantification of surface roughness of parts processed by laminated object manufacturing. Journal of Materials Processing Technology, 212(2), 339-346. doi.org/10.1016/j.jmatprotec.2011.08.013. DOI: https://doi.org/10.1016/j.jmatprotec.2011.08.013

Hehr, A., & Norfolk, M. (2019). A comprehensive review of ultrasonic additive manufacturing. Rapid Prototyping Journal, 26(3), 445-458. doi.org/10.1108/RPJ-03-2019-0056. DOI: https://doi.org/10.1108/RPJ-03-2019-0056

Zhang, Y., Jarosinski, W., Jung, Y. G., & Zhang, J. (2018). Additive manufacturing processes and equipment. In Additive manufacturing (pp. 39-51). Butterworth-Heinemann. doi.org/10.1016/B978-0-12-812155-9.00002-5 DOI: https://doi.org/10.1016/B978-0-12-812155-9.00002-5

Graff, K. F., Short, M., & Norfolk, M. (2010). Very high power ultrasonic additive manufacturing (VHP UAM) for advanced materials. In 2010 International Solid Freeform Fabrication Symposium. University of Texas at Austin. doi.org/10.26153/tsw/15165.

Uriondo, A., Esperon-Miguez, M., & Perinpanayagam, S. (2015). The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(11), 2132–2147. doi.org/10.1177/0954410014568797 DOI: https://doi.org/10.1177/0954410014568797

Wang, Y. C., Chen, T., & Yeh, Y. L. (2018). Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors - The International Journal of Advanced Manufacturing Technology. SpringerLink. doi.org/10.1007/s00170-018-1927-8 DOI: https://doi.org/10.1007/s00170-018-1927-8

Kumar, L. J., & Krishnadas Nair, C. G. (2016). Current Trends of Additive Manufacturing in the Aerospace Industry. Current Trends of Additive Manufacturing in the Aerospace Industry | SpringerLink. doi.org/10.1007/978-981-10-0812-2_4 DOI: https://doi.org/10.1007/978-981-10-0812-2_4

Bahnini, I., Rivette, M., Rechia, A., Siadat, A., & Elmesbahi, A. (2018). Additive manufacturing technology: the status, applications, and prospects. The International Journal of Advanced Manufacturing Technology, 97(1–4), 147–161. doi.org/10.1007/s00170-018-1932-y DOI: https://doi.org/10.1007/s00170-018-1932-y

Mok, S. W., Nizak, R., Fu, S. C., Ho, K. W. K., Qin, L., Saris, D. B., Chan, K. M., & Malda, J. (2016). From the printer: Potential of three-dimensional printing for orthopaedic applications. Journal of Orthopaedic Translation, 6, 42–49. doi.org/10.1016/j.jot.2016.04.003 DOI: https://doi.org/10.1016/j.jot.2016.04.003

Chang, R., Emami, K., Wu, H., & Sun, W. (2010). Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2(4), 045004. doi.org/10.1088/1758-5082/2/4/045004 DOI: https://doi.org/10.1088/1758-5082/2/4/045004

Kang, H. W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J., & Atala, A. (2016). A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 34(3), 312–319. doi.org/10.1038/nbt.3413 DOI: https://doi.org/10.1038/nbt.3413

Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Engineering, 151, 292–299. doi.org/10.1016/j.proeng.2016.07.357 DOI: https://doi.org/10.1016/j.proeng.2016.07.357

Sakin, M., & Kiroglu, Y. C. (2017). 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 702–711. doi.org/10.1016/j.egypro.2017.09.562 DOI: https://doi.org/10.1016/j.egypro.2017.09.562

Schiller, G. J. (2015). Additive manufacturing for Aerospace. In 2015 IEEE Aerospace Conference (pp. 1-8). IEEE doi.org/10.1109/AERO.2015.7118958. DOI: https://doi.org/10.1109/AERO.2015.7118958

Iftekar, S. F., Aabid, A., Amir, A., & Baig, M. (2023). Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers, 15(11), 2519. doi.org/10.3390/polym15112519 DOI: https://doi.org/10.3390/polym15112519

Jiménez, M., Romero, L., Domínguez, I. A., Espinosa, M. D. M., & Domínguez, M. (2019). Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity, 2019, 1–30. doi.org/10.1155/2019/9656938 DOI: https://doi.org/10.1155/2019/9656938

Bourell, D. L., Rosen, D. W., & Leu, M. C. (2014, March). The Roadmap for Additive Manufacturing and Its Impact. 3D Printing and Additive Manufacturing, 1(1), 6–9. doi.org/10.1089/3dp.2013.0002 DOI: https://doi.org/10.1089/3dp.2013.0002

Huang, Y., Leu, M. C., Mazumder, J., & Donmez, A. (2015). Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations. Journal of Manufacturing Science and Engineering, 137(1). doi.org/10.1115/1.4028725 DOI: https://doi.org/10.1115/1.4028725

Jackson, T., Liu, H., Patrikalakis, N., Sachs, E., & Cima, M. (1999). Modeling and designing functionally graded material components for fabrication with local composition control. Materials & Design, 20(2–3), 63–75. doi.org/10.1016/s0261-3069(99)00011-4 DOI: https://doi.org/10.1016/S0261-3069(99)00011-4

Yu, K., Ritchie, A., Mao, Y., Dunn, M. L., & Qi, H. J. (2015). Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials. Procedia IUTAM, 12, 193–203. doi.org/10.1016/j.piutam.2014.12.021 DOI: https://doi.org/10.1016/j.piutam.2014.12.021

Zastrow, M. (2020). 3D printing gets bigger, faster and stronger. Nature, 578(7793), 20–23. doi.org/10.1038/d41586-020-00271-6 DOI: https://doi.org/10.1038/d41586-020-00271-6

Castelvecchi, D. (2015). Chemical trick speeds up 3D printing. Nature. doi.org/10.1038/nature.2015.17122 DOI: https://doi.org/10.1038/nature.2015.17122

Silver, A. (2019). Five innovative ways to use 3D printing in the laboratory. Nature, 565(7737), 123–124. doi.org/10.1038/d41586-018-07853-5 DOI: https://doi.org/10.1038/d41586-018-07853-5

Peng, M., Shi, D., Sun, Y., Cheng, J., Zhao, B., Xie, Y., Zhang, J., Guo, W., Jia, Z., Liang, Z., & Jiang, L. (2020). 3D Printed Mechanically Robust Graphene/CNT Electrodes for Highly Efficient Overall Water Splitting. Advanced Materials, 32(23). doi.org/10.1002/adma.201908201 DOI: https://doi.org/10.1002/adma.201908201

Saleh Alghamdi, S., John, S., Roy Choudhury, N., & Dutta, N. K. (2021). Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers, 13(5), 753. doi.org/10.3390/polym13050753. DOI: https://doi.org/10.3390/polym13050753

Schelly, C., Anzalone, G., Wijnen, B., & Pearce, J. M. (2015). Open-source 3-D printing technologies for education: Bringing additive manufacturing to the classroom. Journal of Visual Languages & Computing, 28, 226-237. doi.org/10.1016/j.jvlc.2015.01.004. DOI: https://doi.org/10.1016/j.jvlc.2015.01.004

Wu, H., Mehrabi, H., Naveed, N., & Karagiannidis, P. (2022). Impact of strategic control and supply chain management on recycled plastic additive manufacturing. Journal of Cleaner Production, 364, 132511. doi.org/10.1016/j.jclepro.2022.132511. DOI: https://doi.org/10.1016/j.jclepro.2022.132511

Zhai, Y., Lados, D. A., & LaGoy, J. L. (2014). Additive manufacturing: making imagination the major limitation. Jom, 66, 808-816. doi.org/10.1007/s11837-014-0886-2. DOI: https://doi.org/10.1007/s11837-014-0886-2

Downloads

Published

2024-02-02

How to Cite

Hossain, Md. Imam, et al. “TECHNOLOGY OF ADDITIVE MANUFACTURING: A COMPREHENSIVE REVIEW”. Kufa Journal of Engineering, vol. 15, no. 1, Feb. 2024, pp. 108-46, doi:10.30572/2018/kje/150108.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.