Nanotechnology: optimal applications in anti-cancer drug medicine treatment and diagnosis

Authors

  • Muthana H Al-saidi Dept. of Electrical Engineering, Faculty of Engineering, University of Kufa, Iraq
  • Hadi Hasan Hadi Dept. of Chemistry, Faculty of sciences, University of Kufa, Iraq
  • Wurood Hasan Hadi Dept. of Biology, Faculty of sciences, University of Kufa, Iraq

DOI:

https://doi.org/10.36320/ajb/v14.i3.11149

Keywords:

Nanotechnology, optimal applications, anti-cancer

Abstract

The scientific field devoted the importance of studying nanotechnology, which characterizes nanoparticles and their multi-purpose functions, especially nanomedicine techniques. The review focused on newer technologies in biomedical applications as a drug vector in cancer treatment. To occupy the center stage on most of the biological vectors of drugs for the treatment of cancer. Practically, chemical treatments have harm as they target cancerous and non-cancerous cells alike, the solubility is almost non-existent, and the inability of chemotherapy to penetrate cancerous cells, which opens the way for this technique with clear prospects for the aforementioned purpose. The ability to selectively deliver nano-drugs to targeted cancer cells in an optimal manner and to avoid non-specific interactions with healthy cells. The current review focuses on ways to improve the size, shape, and properties of nanomaterials that can be exploited in cancer therapy. The successful treatment of nanocarriers for cancer can be designed for the future as nanotherapies.

Downloads

Download data is not yet available.

References

Yan, S., Zhao, P., Yu, T., & Gu, N. (2019). Current applications and future prospects of nanotechnology in cancer immunotherapy. Cancer biology & medicine, 16(3), 486. DOI: https://doi.org/10.20892/j.issn.2095-3941.2018.0493

Al-saidi, M. H., & Hadi, W. H. (2022). Review The green method of preparing nanoparticles and its applications in the field of biology. Al-Kufa University Journal for Biology, 14(2).

de Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharmaceutical Journal, 27(1), 1-8. DOI: https://doi.org/10.1016/j.jsps.2018.07.011

Khan, F., Shahid, A., Zhu, H., Wang, N., Javed, M. R., Ahmad, N., ... & Mehmood, M. A. (2022). Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere, 293, 133571. DOI: https://doi.org/10.1016/j.chemosphere.2022.133571

Lade, B. D., & Shanware, A. S. (2020). Phytonanofabrication: methodology and factors affecting biosynthesis of nanoparticles. In Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. IntechOpen. DOI: https://doi.org/10.5772/intechopen.90918

Sumanth, B., Lakshmeesha, T. R., Ansari, M. A., Alzohairy, M. A., Udayashankar, A. C., Shobha, B., ... & Almatroudi, A. (2020). Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its nanoantibiotic potential. International Journal of Nanomedicine, 15, 8519. DOI: https://doi.org/10.2147/IJN.S271743

Chaturvedi, S., & Dave, P. N. (2020). Application of nanotechnology in foods and beverages. In Nanoengineering in the beverage industry (pp. 137-162). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-816677-2.00005-3

Hassan, E., Al-saidi, M. H., Rana, J. A., & Thahab, S. M. (2022). Preparation and Characterization of ZnO Nano-Sheets Prepared by Different Depositing Methods. Iraqi Journal of Science, 538-547. DOI: https://doi.org/10.24996/ijs.2022.63.2.11

Wang, L., Hasanzadeh Kafshgari, M., & Meunier, M. (2020). Optical properties and applications of plasmonic‐metal nanoparticles. Advanced Functional Materials, 30(51), 2005400. DOI: https://doi.org/10.1002/adfm.202005400

Ariga, K. (2021). Nanoarchitectonics: what's coming next after nanotechnology?. Nanoscale Horizons, 6(5), 364-378. DOI: https://doi.org/10.1039/D0NH00680G

Dastani, M. M., AL-Ali, M. H., & Moradi, M. (2019). Influence of current annealing on the magneto-impedance response of co-based ribbons arising from surface structural improvement. Journal of Non-Crystalline Solids, 516, 9-13. DOI: https://doi.org/10.1016/j.jnoncrysol.2019.01.018

Aljamali, N. M., Thamer, A. K., & Sabea, A. M. (2021). Review on electronic instruments and its nano-skill solicitations. Journal of Electrical and Power System Engineering, 7(3), 11-19.

Zin, K. K. O., Aung, T., & Kyaw, Z. L. (2021). SYNTHESIS AND CHARACTERIZATION OF NANOSCALE NICKEL OXIDE BY USING MICROWAVE METHOD.

Wang, Z., Porter, A. L., Kwon, S., Youtie, J., Shapira, P., Carley, S. F., & Liu, X. (2019). Updating a search strategy to track emerging nanotechnologies. Journal of Nanoparticle Research, 21(9), 1-21. DOI: https://doi.org/10.1007/s11051-019-4627-x

Forestal, R. L., Lee, H. I., Pi, S. M., & Liu, S. H. (2022). Spatio-temporal clustering analysis and technological forecasting of nanotechnology using patent data. Technology Analysis & Strategic Management, 1-17. DOI: https://doi.org/10.1080/09537325.2022.2069006

Hartshorn, C. M., & Morris, S. A. (2019). Theranostics: A historical perspective of cancer nanotechnology paving the way for simultaneous use applications. In Nanotheranostics for cancer applications (pp. 91-105). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-01775-0_5

Dutta, A., Pan, Y., Liu, J. Q., & Kumar, A. (2021). Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coordination Chemistry Reviews, 445, 214074. DOI: https://doi.org/10.1016/j.ccr.2021.214074

Guo, L., & Jin, S. (2019). Stable covalent organic frameworks for photochemical applications. ChemPhotoChem, 3(10), 973-983. DOI: https://doi.org/10.1002/cptc.201900089

Fein, Y., Gome, G., Zuckerman, O., & Erel, H. (2020, June). My first biolab: an inquiry-based learning system for microbiology exploration. In Proceedings of the 2020 ACM Interaction Design and Children Conference: Extended Abstracts (pp. 292-295). DOI: https://doi.org/10.1145/3397617.3402040

Kaur, P., Singh, S., Ghoshal, G., Ramamurthy, P. C., Parihar, P., Singh, J., & Singh, A. (2022). Valorization of Agri-Food Industry Waste for the Production of Microbial Pigments: An Eco-Friendly Approach. Advances in Agricultural and Industrial Microbiology, 137-167. DOI: https://doi.org/10.1007/978-981-16-8918-5_8

Kumar, S., Basumatary, I. B., Sudhani, H. P., Bajpai, V. K., Chen, L., Shukla, S., & Mukherjee, A. (2021). Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends in Food Science & Technology, 112, 651-666. DOI: https://doi.org/10.1016/j.tifs.2021.04.031

Huang, W., Ling, S., Li, C., Omenetto, F. G., & Kaplan, D. L. (2018). Silkworm silkbased materials and devices generated using bio-nanotechnology. Chemical Society Reviews, 47(17), 6486-6504. DOI: https://doi.org/10.1039/C8CS00187A

Thangadurai, D., Sangeetha, J., & Prasad, R. (2020). Functional bionanomaterials. Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-41464-1

Adir, O., Poley, M., Chen, G., Froim, S., Krinsky, N., Shklover, J., ... & Schroeder, A. (2020). Integrating artificial intelligence and nanotechnology for precision cancer medicine. Advanced Materials, 32(13), 1901989. DOI: https://doi.org/10.1002/adma.201901989

Riaz, U., Mehmood, T., Iqbal, S., Asad, M., Iqbal, R., Nisar, U., & Masood Akhtar, M. (2021). Historical Background, Development and Preparation of Nanomaterials. In Nanotechnology (pp. 1-13). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-9437-3_1

Vurro, M., Miguel‐Rojas, C., & Pérez‐de‐Luque, A. (2019). Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest management science, 75(9), 2403-2412. DOI: https://doi.org/10.1002/ps.5348

Falchi, L., Khalil, W. A., Hassan, M., & Marei, W. F. (2018). Perspectives of nanotechnology in male fertility and sperm function. International Journal of Veterinary Science and Medicine, 6(2), 265-269. DOI: https://doi.org/10.1016/j.ijvsm.2018.09.001

Doubleday, R., & Viseu, A. (2019). Questioning Interdisciplinarity: What roles for laboratory based social science?. In Nano Meets Macro (pp. 55-84). Jenny Stanford Publishing. DOI: https://doi.org/10.1201/9780429067150-4

Merzbacher, C. (2020). National Nanotechnology Initiative: A Model for Advancing Revolutionary Technologies. In Women in Nanotechnology (pp. 121-133). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-19951-7_9

Fogelberg, H. (2019). Historical Context of the US National Nanotechnology Initiative. In Nano Meets Macro (pp. 29-53). Jenny Stanford Publishing. DOI: https://doi.org/10.1201/9780429067150-3

Ryzhenkov, A. Y., & Inshakova, E. I. (2019). Formation of Legal, Regulatory, and Informational Basis for Nanoindustry Development in Russia. In Ubiquitous Computing and the Internet of Things: Prerequisites for the Development of ICT (pp. 251-263). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-13397-9_29

Nouri, M. (2022). Oxidation Behavior of Magnetic Hybrid Nanoalloys. In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites (pp. 1-43). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-34007-0_42-1

Chen, H., Guo, J., Wang, Y., Dong, W., Zhao, Y., & Sun, L. (2022). Bio‐Inspired Imprinting Materials for Biomedical Applications. Advanced Science, 2202038. DOI: https://doi.org/10.1002/advs.202202038

Malik, P., & Mukherjee, T. K. (2018). Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. International Journal of Pharmaceutics, 553(1-2), 483-509. DOI: https://doi.org/10.1016/j.ijpharm.2018.10.048

Khalili, L., Dehghan, G., Sheibani, N., & Khataee, A. (2022). Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. International Journal of Biological Macromolecules. DOI: https://doi.org/10.1016/j.ijbiomac.2022.05.156

Pang, X., Li, D., Zhu, J., Cheng, J., & Liu, G. (2020). Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics. Nano-micro letters, 12(1), 1-23. DOI: https://doi.org/10.1007/s40820-020-00485-3

Fu, L. H., Hu, Y. R., Qi, C., He, T., Jiang, S., Jiang, C., ... & Huang, P. (2019). Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS nano, 13(12), 13985-13994. DOI: https://doi.org/10.1021/acsnano.9b05836

Zhang, P., Guo, Z., Monikh, F. A., Lynch, I., Valsami-Jones, E., & Zhang, Z. (2021). Growing rice (Oryza sativa) aerobically reduces phytotoxicity, uptake, and transformation of CeO2 nanoparticles. Environmental Science & Technology, 55(13), 8654-8664. DOI: https://doi.org/10.1021/acs.est.0c08813

Guru Prasad, A. L. (2019). Formulation Development of Antihypertensive Drug Labetalol HCL Injection (Doctoral dissertation, CL Baid Metha College of Pharmacy, Chennai).

Mertins, O., Mathews, P. D., & Angelova, A. (2020). Advances in the design of phsensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials, 10(5), 963. DOI: https://doi.org/10.3390/nano10050963

Zhao, S., Sewell, C. D., Liu, R., Jia, S., Wang, Z., He, Y., ... & Lin, Z. (2020). SnO2 as advanced anode of alkali‐ion batteries: inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility. Advanced Energy Materials, 10(6), 1902657. DOI: https://doi.org/10.1002/aenm.201902657

Shi, W., Yao, Q., Donghui, W., Qu, S., Chen, Y., Lee, K. H., & Chen, L. (2022). Vapor phase polymerization of Ag QD-embedded PEDOT film with enhanced thermoelectric and antibacterial properties. NPG Asia Materials, 14(1), 1-8. DOI: https://doi.org/10.1038/s41427-022-00391-7

Zhou, J., Fan, X., Wu, D., Liu, J., Zhang, Y., Ye, Z., ... & Qian, J. (2021). Hot-band absorption of indocyanine green for advanced anti-stokes fluorescence bioimaging. Light: Science & Applications, 10(1), 1-12. DOI: https://doi.org/10.1038/s41377-021-00627-1

Duan, M., Shapter, J. G., Qi, W., Yang, S., & Gao, G. (2018). Recent progress in magnetic nanoparticles: synthesis, properties, andapplications. Nanotechnology, 29(45), 452001. DOI: https://doi.org/10.1088/1361-6528/aadcec

Aslam, M., Abdullah, A. Z., & Rafatullah, M. (2021). Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. Journal of Industrial and Engineering Chemistry, 98, 1-16. DOI: https://doi.org/10.1016/j.jiec.2021.04.010

Dinesha, P., Kumar, S., & Rosen, M. A. (2021). Effects of particle size of cerium oxide nanoparticles on the combustion behavior and exhaust emissions of a diesel engine powered by biodiesel/diesel blend. Biofuel Research Journal, 8(2), 1374. DOI: https://doi.org/10.18331/BRJ2021.8.2.3

Hakke, V., Sonawane, S., Anandan, S., Sonawane, S., & Ashokkumar, M. (2021). Process intensification approach using microreactors for synthesizing nanomaterials—A critical review. Nanomaterials, 11(1), 98. DOI: https://doi.org/10.3390/nano11010098

Mertz, D., Harlepp, S., Goetz, J., Bégin, D., Schlatter, G., Bégin‐Colin, S., & Hébraud, A. (2020). Nanocomposite polymer scaffolds responding under external stimuli for drug delivery and tissue engineering applications. Advanced Therapeutics, 3(2), 1900143. DOI: https://doi.org/10.1002/adtp.201900143

He, L., Zheng, R., Min, J., Lu, F., Wu, C., Zhi, Y., ... & Su, H. (2021). Preparation of magnetic microgels based on dextran for stimuli-responsive release of doxorubicin. Journal of Magnetism and Magnetic Materials, 517, 167394. DOI: https://doi.org/10.1016/j.jmmm.2020.167394

Dong, P., Rakesh, K. P., Manukumar, H. M., Mohammed, Y. H. E., Karthik, C. S., Sumathi, S., ... & Qin, H. L. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic chemistry, 85, 325-336.

Liu, Y., Shi, L., Su, L., van der Mei, H. C., Jutte, P. C., Ren, Y., & Busscher, H. J. (2019). Nanotechnology-based antimicrobials and delivery systems for biofilminfection control. Chemical Society Reviews, 48(2), 428-446. DOI: https://doi.org/10.1039/C7CS00807D

Nawaz, M., Sliman, Y., & Ercan, I. (2018). Ernandes T. Tenório-Neto†, Chariya Kaewsaneha‡, § , Abdelhamid Elaissari‡⁎ Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,† Department of Chemistry, State University of Ponta Grossa, Ponta Grossa,

Paraná, Brazil,‡ Univ Lyon, University Claude Bernard Lyon-1, CNRS. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume 2: Advanced Nanocarriers for Therapeutics, 37.

Mikocziova, I., Greiff, V., & Sollid, L. M. (2021). Immunoglobulin germline gene variation and its impact on human disease. Genes & Immunity, 22(4), 205-217. DOI: https://doi.org/10.1038/s41435-021-00145-5

Cardoso, V. F., Francesko, A., Ribeiro, C., Bañobre‐López, M., Martins, P., & Lanceros‐Mendez, S. (2018). Advances in magnetic nanoparticles for biomedical applications. Advanced healthcare materials, 7(5), 1700845. DOI: https://doi.org/10.1002/adhm.201700845

Shrestha, S., Banstola, A., Jeong, J. H., Seo, J. H., & Yook, S. (2022). Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. Journal of Controlled Release, 348, 518-536. DOI: https://doi.org/10.1016/j.jconrel.2022.06.013

Zhong, X., Dai, X., Wang, Y., Wang, H., Qian, H., & Wang, X. (2022). Copper‐based nanomaterials for cancer theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, e1797. DOI: https://doi.org/10.1002/wnan.1797

Singh, R., Sharma, A., Saji, J., Umapathi, A., Kumar, S., & Daima, H. K. (2022). Smart nanomaterials for cancer diagnosis and treatment. Nano Convergence, 9(1), 1-39. DOI: https://doi.org/10.1186/s40580-022-00313-x

Gulfam, M., Sahle, F. F., & Lowe, T. L. (2019). Design strategies for chemicalstimuli-responsive programmable nanotherapeutics. Drug discovery today, 24(1), 129-147. DOI: https://doi.org/10.1016/j.drudis.2018.09.019

Dong, P., Rakesh, K. P., Manukumar, H. M., Mohammed, Y. H. E., Karthik, C. S., Sumathi, S., ... & Qin, H. L. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic chemistry, 85, 325-336.

Subhan, M. A., & Torchilin, V. P. (2020). siRNA based drug design, quality, delivery and clinical translation. Nanomedicine: Nanotechnology, Biology and Medicine, 29, 102239. DOI: https://doi.org/10.1016/j.nano.2020.102239

Medici, S., Peana, M., Pelucelli, A., & Zoroddu, M. A. (2021, November). An updated overview on metal nanoparticles toxicity. In Seminars in Cancer Biology (Vol. 76, pp. 17-26). Academic Press. DOI: https://doi.org/10.1016/j.semcancer.2021.06.020

Tabish, T. A., Dey, P., Mosca, S., Salimi, M., Palombo, F., Matousek, P., & Stone, N. (2020). Smart gold nanostructures for light mediated cancer theranostics: combining optical diagnostics with photothermal therapy. Advanced Science, 7(15), 1903441. DOI: https://doi.org/10.1002/advs.201903441

Raj, S., Khurana, S., Choudhari, R., Kesari, K. K., Kamal, M. A., Garg, N., ... & Kumar, D. (2021, February). Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. In Seminars in cancer biology (Vol. 69, pp. 166-177). Academic Press. DOI: https://doi.org/10.1016/j.semcancer.2019.11.002

Tan, Y. Y., Yap, P. K., Lim, G. L. X., Mehta, M., Chan, Y., Ng, S. W., ... & Chellappan, D. K. (2020). Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chemico-biological interactions, 329, 109221.

Dong, P., Rakesh, K. P., Manukumar, H. M., Mohammed, Y. H. E., Karthik, C. S., Sumathi, S., ... & Qin, H. L. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic chemistry, 85, 325-336.

Zhou, H. M., Zhang, J. G., Zhang, X., & Li, Q. (2021). Targeting cancer stem cells for reversing therapy resistance: Mechanism, signaling, and prospective agents. Signal transduction and targeted therapy, 6(1), 1-17. DOI: https://doi.org/10.1038/s41392-020-00430-1

Najafi, M., Mortezaee, K., & Majidpoor, J. (2019). Cancer stem cell (CSC) resistance drivers. Life sciences, 234, 116781. DOI: https://doi.org/10.1016/j.lfs.2019.116781

Iannazzo, D., Ettari, R., Giofrè, S., Eid, A. H., & Bitto, A. (2020). Recent advances in nanotherapeutics for multiple myeloma. Cancers, 12(11), 3144. DOI: https://doi.org/10.3390/cancers12113144

Filipczak, N., Yalamarty, S. S. K., Li, X., Parveen, F., & Torchilin, V. (2021). Developments in treatment methodologies using dendrimers for infectious diseases. Molecules, 26(11), 3304. DOI: https://doi.org/10.3390/molecules26113304

Tan, Y. Y., Yap, P. K., Lim, G. L. X., Mehta, M., Chan, Y., Ng, S. W., ... & Chellappan, D. K. (2020). Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chemico-biological interactions, 329, 109221. DOI: https://doi.org/10.1016/j.cbi.2020.109221

Dong, P., Rakesh, K. P., Manukumar, H. M., Mohammed, Y. H. E., Karthik, C. S., Sumathi, S., ... & Qin, H. L. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic chemistry, 85, 325-336.

Soltani, M., Moradi Kashkooli, F., Souri, M., Zare Harofte, S., Harati, T., Khadem, A., ... & Raahemifar, K. (2021). Enhancing clinical translation of cancer using nanoinformatics. Cancers, 13(10), 2481. DOI: https://doi.org/10.3390/cancers13102481

Milewska, S., Niemirowicz-Laskowska, K., Siemiaszko, G., Nowicki, P., Wilczewska, A. Z., & Car, H. (2021). Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer DOI: https://doi.org/10.2147/IJN.S323831

treatment. International journal of nanomedicine, 16, 6593.

Montiel Schneider, M. G., Martín, M. J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., & Nedyalkova, M. (2022). Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics, 14(1), 204. DOI: https://doi.org/10.3390/pharmaceutics14010204

Palanisamy, S., & Wang, Y. M. (2019). Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton transactions, 48(26), 9490-9515. DOI: https://doi.org/10.1039/C9DT00459A

Al-Musawi, S., Albukhaty, S., Al-Karagoly, H., Sulaiman, G. M., Jabir, M. S., & Naderi-Manesh, H. (2020). Dextran-coated superparamagnetic nanoparticles modified with folate for targeted drug delivery of camptothecin. Advances in Natural Sciences: Nanoscience and Nanotechnology, 11(4), 045009. DOI: https://doi.org/10.1088/2043-6254/abc75b

Zhang, P., & Travas-Sejdic, J. (2021). Fabrication of conducting polymer microelectrodes and microstructures for bioelectronics. Journal of Materials Chemistry C, 9(31), 9730-9760. DOI: https://doi.org/10.1039/D1TC01618K

Fan, B. (2018). Development and applications of polyglyoxylate self-immolative polymers.

Mishra, B., Biswal, S., Dubey, N. C., & Tripathi, B. P. (2022). Anti (-bio) fouling Nanostructured Membranes Based on the Cross-Linked Assembly of StimuliResponsive Zwitterionic Microgels. ACS Applied Polymer Materials. DOI: https://doi.org/10.1021/acsapm.2c00302

Harijan, M., & Singh, M. (2022). Zwitterionic polymers in drug delivery: A review. Journal of Molecular Recognition, 35(1), e2944. DOI: https://doi.org/10.1002/jmr.2944

Zhang, P., Chen, D., Li, L., & Sun, K. (2022). Charge reversal nano-systems for tumor therapy. Journal of Nanobiotechnology, 20(1), 1-27. DOI: https://doi.org/10.1186/s12951-021-01221-8

Liu, Y., Yang, K., Cheng, L., Zhu, J., Ma, X., Xu, H., ... & Liu, Z. (2013). PEGylated FePt@ Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. Nanomedicine: Nanotechnology, Biology and Medicine, 9(7), 1077-1088. DOI: https://doi.org/10.1016/j.nano.2013.02.010

Yang, Z., Song, J., Tang, W., Fan, W., Dai, Y., Shen, Z., ... & Chen, X. (2019). Stimuli-responsive nanotheranostics for real-time monitoring drug release by photoacoustic imaging. Theranostics, 9(2), 526. DOI: https://doi.org/10.7150/thno.30779

Das, S. S., Bharadwaj, P., Bilal, M., Barani, M., Rahdar, A., Taboada, P., ... & Kyzas, G. Z. (2020). Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 12(6), 1397. DOI: https://doi.org/10.3390/polym12061397

Ji, D. K., Ménard-Moyon, C., & Bianco, A. (2019). Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Advanced Drug Delivery Reviews, 138, 211-232. DOI: https://doi.org/10.1016/j.addr.2018.08.010

Dong, P., Rakesh, K. P., Manukumar, H. M., Mohammed, Y. H. E., Karthik, C. S., Sumathi, S., ... & Qin, H. L. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic chemistry, 85, 325-336.

HADI, W. H., & ABOOD, A. H. (2022). Effect of ibuprofen on histological parameters of the liver in male albino rats. Iranian Journal of Ichthyology, 9, 234- 240.

Song, C., Ben-Shlomo, G., & Que, L. (2019). A multifunctional smart soft contact lens device enabled by nanopore thin film for glaucoma diagnostics and in situ drug delivery. Journal of Microelectromechanical Systems, 28(5), 810-816. DOI: https://doi.org/10.1109/JMEMS.2019.2927232

Puiggalí-Jou, A., Del Valle, L. J., & Alemán, C. (2019). Drug delivery systems based on intrinsically conducting polymers. Journal of Controlled Release, 309, 244-264. DOI: https://doi.org/10.1016/j.jconrel.2019.07.035

Caldas, M., Santos, A. C., Rebelo, R., Pereira, I., Veiga, F., Reis, R. L., & Correlo, V. M. (2020). Electro-responsive controlled drug delivery from melanin nanoparticles. International Journal of Pharmaceutics, 588, 119773. DOI: https://doi.org/10.1016/j.ijpharm.2020.119773

Bansal, M., Dravid, A., Aqrawe, Z., Montgomery, J., Wu, Z., & Svirskis, D. (2020). Conducting polymer hydrogels for electrically responsive drug delivery. Journal of Controlled Release, 328, 192-209. DOI: https://doi.org/10.1016/j.jconrel.2020.08.051

Lakshani Randitha, G. L. (2018). Poly-Lactic Acid Magnetoelectric Microspheres for Drug Release Applications. Chauhan, P. (2022). Nanodevices for the Detection of Cancer Cells. In Smart Nanodevices for Point-of-Care Applications (pp. 169-188). CRC Press. DOI: https://doi.org/10.1201/9781003157823-14

Casillas-Popova, S. N., Bernad-Bernad, M. J., & Gracia-Mora, J. (2022). Modeling of adsorption and release kinetics of methotrexate from thermo/magnetic responsive CoFe2O4–BaTiO3, CoFe2O4–Bi4Ti3O12 and Fe3O4–BaTiO3 core-shell magnetoelectric nanoparticles functionalized with PNIPAm. Journal of Drug Delivery Science and Technology, 68, 103121. DOI: https://doi.org/10.1016/j.jddst.2022.103121

Chen, Y., Chen, N., & Feng, X. (2021). The role of internal and external stimuli in the rational design of skin-specific drug delivery systems. International Journal of Pharmaceutics, 592, 120081. DOI: https://doi.org/10.1016/j.ijpharm.2020.120081

Dai, Y., Chen, X., & Zhang, X. (2019). Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polymer Chemistry, 10(1), 34-44. DOI: https://doi.org/10.1039/C8PY01174E

Wang, Z., Yang, Z., Fang, R., Yan, Y., Ran, J., & Zhang, L. (2022). A State-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chemical Engineering Journal, 429, 132322. DOI: https://doi.org/10.1016/j.cej.2021.132322

Dong, P., Rakesh, K. P., Manukumar, H. M., Mohammed, Y. H. E., Karthik, C. S., Sumathi, S., ... & Qin, H. L. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic chemistry, 85, 325-336. DOI: https://doi.org/10.1016/j.bioorg.2019.01.019

Sajjadi, M., Nasrollahzadeh, M., Jaleh, B., Soufi, G. J., & Iravani, S. (2021). Carbonbased nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. Journal of Drug Targeting, 29(7), 716-741. DOI: https://doi.org/10.1080/1061186X.2021.1886301

Abid Ali Baker, H., Abdul AlRudah, T., & Hassan Hady, M. (2007). Estimation of entrance skin exposure for patients undergoing fluoroscopic examination in extracorporeal shockwave lithotripsy (ESWL). journal of kerbala university, 3(4), 173-176.

Zhou, T., Wu, L., Ma, N., Tang, F., Chen, J., Jiang, Z., ... & Zong, Z. (2022). Photothermally responsive theranostic nanocomposites for near‐infrared light triggered drug release and enhanced synergism of photothermo‐chemotherapy for gastric cancer. Bioengineering & Translational Medicine, e10368. DOI: https://doi.org/10.1002/btm2.10368

Raza, A., Hayat, U., Rasheed, T., Bilal, M., & Iqbal, H. M. (2019). ―Smart‖ materialsbased near-infrared light responsive drug delivery systems for cancer treatment: a review. Journal of Materials Research and Technology, 8(1), 1497-1509. DOI: https://doi.org/10.1016/j.jmrt.2018.03.007

Wang, Y., Zhang, Y., Zhang, X., Zhang, Z., She, J., Wu, D., & Gao, W. (2022). High Drug-Loading Nanomedicines for Tumor Chemo–Photo Combination Therapy: Advances and Perspectives. Pharmaceutics, 14(8), 1735. DOI: https://doi.org/10.3390/pharmaceutics14081735

Silva, C. R., Babo, P. S., Gulino, M., Costa, L., Oliveira, J. M., Silva-Correia, J., ... & Gomes, M. E. (2018). Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta biomaterialia, 77, 155-171. DOI: https://doi.org/10.1016/j.actbio.2018.07.035

Al-Mayahi, A. A. H., Amin Al Joher, D., Hassan Hadi, M., & Jalyl Ahmed, R. (2008). Radioactivity level measurement of some cement samples. journal of kerbala university, 4(4), 81-86.

Al-Ostoot, F. H., Salah, S., Khamees, H. A., & Khanum, S. A. (2021). Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treatment and Research Communications, 28, 100422. DOI: https://doi.org/10.1016/j.ctarc.2021.100422

Liang, P., Ballou, B., Lv, X., Si, W., Bruchez, M. P., Huang, W., & Dong, X. (2021). Monotherapy and combination therapy using anti‐angiogenic nanoagents to fight cancer. Advanced Materials, 33(15), 2005155. DOI: https://doi.org/10.1002/adma.202005155

Baker, H. A. A., & Hady, M. H. (2009). Assessment of skin radiation exposure for pediatrics examined by routine X-ray. Journal of Kerbala University, 7(2).

Downloads

Published

2022-12-29

How to Cite

H Al-saidi, M., Hasan Hadi, H., & Hasan Hadi, W. (2022). Nanotechnology: optimal applications in anti-cancer drug medicine treatment and diagnosis. Al-Kufa University Journal for Biology, 14(3), 17–33. https://doi.org/10.36320/ajb/v14.i3.11149

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.