A Review Bio-Nanotechnology and Nanoparticles Applications in Biology

Bio-Nanotechnology

Authors

  • tsahel aldulaimi babylon
  • Zeana shaker AL-hindi science for women Univ. of Babylon
  • Hawraa Sabah Al-Musawi coll. of science for women Univ. of Babylon

DOI:

https://doi.org/10.36320/ajb/v16.i1.13948

Keywords:

Nanomaterial, Nanotechnology, Bio-Nanotechnology

Abstract

Nanotechnology: It is an application to study the basic principles of molecules and compounds that do not exceed one hundred nanometers in size and to engineer them for use in useful applications such as in the field of medicine to treat cancerous diseases and various microbial infections and in the field of engineering, chemistry, physics and other sciences. Numerous bacteria strains that are resistant to antibiotics have arisen as a result of the careless and overuse use antibiotics. As a result, the use of nanoparticles has emerged as a competitive substitute for antibiotics in the fight against the evolution of bacterial drug resistance. In addition to having strong antimicrobial properties that may act by weakening already-existing antimicrobial mechanisms, many organic and inorganic nanomaterials also have unique physical and chemical properties that make them important for the quick, sensitive, and selective detection of microbial infections. Furthermore, compared to traditional antibiotics, nanoparticles have less negative effects. In addition, the incorporation of antimicrobial nanomaterial in medical devices can prevent microbial adhesion and infection, also it used as vaccine adjuvants and/or delivery vehicles can evoke more efficient immune responses against microbial infection. The process of microbial production of nanoparticles (NPs) involves a bottom-up approach. Defense mechanisms for detoxification, such as the oxidation/reduction of metal ions, the creation of metal phosphates, carbonates, and sulfides, or the volatilization of metal ions, function as vital survival procedures.

Downloads

Download data is not yet available.

References

Walait M, Mir HR, Noor T, Rani KH, AslamJ, Khalid K, Azhar A, Saeed M, Anwar KH, and Naeem M.(2022). Nano-Biotechnology: Current Applications and Future Scope. Int J Med Res Health Sci, 11(9): 71-90.

Goodsell, David S. (2004). "Bionanotechnology: lessons from nature." John Wiley & Sons.

Singh H., Du J., Yi T.H. (2017). Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: Anticancer and antibacterial activities. Artif. Cells Nanomed. Biotechnol. 45:1310–1316. doi: 10.1080/21691401.2016.1228663. [PubMed] [CrossRef] [Google Scholar].

Iravani, S. (2014). Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects. Int. Sch. Res. Not. 359316. [Google Scholar] [CrossRef][Green Version]

Shi, J., Votruba, A. R., Farokhzad, O. C., & Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano letters, 10(9), 3223–3230. https://doi.org/10.1021/nl102184c

Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. (2014). Nanomedicine in the Management of Microbial Infection - Overview and Perspectives. Nano Today. 1;9 (4):478-498. doi: 10.1016/j.nantod.2014.06.003. PMID: 25267927; PMCID: PMC4175422.

Pelgrift RY, Friedman AJ. (2013). Adv. Drug Deliv. Rev. 65:1803–1815. [PubMed] [Google Scholar]

Ray K, Marteyn B, Sansonetti PJ, Tang CM. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 2009 ; 7 : 333–340. [CrossRef] [PubMed] [Google Scholar]

Silva, Luciano & Silveira, Ariane & Bonatto, Cínthia & Reis, Ivy & Milreu, Paulo. (2017). Silver Nanoparticles as Antimicrobial Agents. 10.1016/B978-0-323-46152-8.00026-3.

Berger, T. J., J. A. Spadaro, S. E. Chapin, and R. O. Becker. (1996). Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob. Agents Ch. 9: 357-358.

Korbekandi, H., & Iravani, S. (2012). Silver Nanoparticles. InTech. doi: 10.5772/34157

ingh R and. Singh D. (2014). “Chitin membranes containing silver nanoparticles for wound dressing application,” International Wound Journal, vol. 11, no. 3, pp. 264–268

Tian, K. K. Y. Wong, C.-M. Ho et al., (2007). “Topical delivery of silver nanoparticles promotes wound healing,” ChemMedChem, 2(1): 129–136

Kaur J. and Tikoo K. (2013). “Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles,” Food and Chemical Toxicology, 51(1): 1–14.

Schreurs, W. J. and H. Rosenberg. (1982). Effect of silver ions on transport and retention of phosphate by Escherichia coli. J. Bacteriol. 152: 7-13.

Amina, S. J., & Guo, B. (2020). A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. International journal of nanomedicine, 15, 9823–9857. https://doi.org/10.2147/IJN.S279094

Versiani, A. F., Andrade, L. M., Martins, E. M. N., Scalzo, S., Geraldo, J. M., Chaves, C. R., Ferreira, D. C., Ladeira, M., Guatimosim, S., Ladeira, L. O., & Da Fonseca, F. G. (2016). Gold nanoparticles and their applications in biomedicine. Future Virology, 11(4), 293-309. https://doi.org/10.2217/fvl-2015-0010

Shukla A., Iravani S. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2018. [Google Scholar]

Li X, Xu H, Chen Z-S, Chen G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Liang XJ, ed. J Nanomater. 270974. doi: 10.1155/2011/270974 [CrossRef] [Google Scholar]

Zhang, Q., Yang, X., and Guan, J. (2019). Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl. Nano Mater. 2, 4681–4697. doi:10.1021/acsanm.9b00976.

Ramamoorthy, V., Kannan, K., & Thiripuranthagan, S. (2018). Photocatalytic Degradation of Textile Reactive Dyes—A Comparative Study Using Nano Silver Decorated Titania-Silica Composite Photocatalysts. J. of Nano. and Nanotech.18(4), 2921-2930.

Arbab A, Tufail S, Rehmat U, Pingfan Z, Manlin G, Muhammad O, Zhiqiang T and YuKui R. (2021). .Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. V9. https://doi.org/10.3389/fchem.2021.629054

Shabbir S., Kulyar M.F.-E.-A., Bhutta Z.A., Boruah P., Asif M. (2021). Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO2NPs) and Their Jeopardy to Human Population. BioNanoScience. 11:621–632. doi: 10.1007/s12668-021-00836-3. [PMC free article] [PubMed]

Rashid, M. M., Forte Tavčer, P., & Tomšič, B. (2021). Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials (Basel, Switzerland), 11(9), 2354. https://doi.org/10.3390/nano11092354

Ni, W., Li, M., Cui, J., Xing, Z., Li, Z., Wu, X., Song, E., Gong, M., & Zhou, W. (2017). 808nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Materials science & engineering. C, Materials for biological applications, 81, 252–260. https://doi.org/10.1016/j.msec.2017.08.020

Bisht N , Phalswal P and Khanna P K. (2022). Selenium nanoparticles: a review on synthesis and biomedical applications. Mater. Adv. 3, 1415-1431. DOI: 10.1039/D1MA00639H

Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Baron, M., Melcova, M., Opatrilova, R., Zidkova, J., Bjørklund, G., Sochor, J., and Kizek, R. (2018). Nano-selenium and its nanomedicine applications: a critical review. International Journal of Nanomedicine, 13, 2107 – 2128.

Sieber, F., Daziano, J. P., Günther, W. H., Krieg, M., Miyagi, K., Sampson, R. W., ... & Bula, R. J. (2005). Elemental selenium generated by the photobleaching of seleno-merocyanine photosensitizers forms conjugates with serum macro-molecules that are toxic to tumor cells. Phosphorus, sulfur, and silicon and the related elements, 180(3-4), 647-657.

Kadhim, H. J., & Taj-Aldin, W. R. (2022). Cytotoxicity of Green biosynthesized selenium nanoparticle on PC3 and WRL 68. NeuroQuantology, 20(12), 1173

Khan, A. U., Khan, M., Cho, M. H., & Khan, M. M. (2020). Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess and biosystems engineering, 43, 1339-1357.

Khan, R. T., & Rasool, S. (2023). Nanotechnology: A new strategy to combat bacterial infections and antibiotic resistant bacteria. In Nanotechnology and Human Health (pp. 167-190). Elsevier.

Muteeb, G. (2023). Nanotechnology—A Light of Hope for Combating Antibiotic Resistance. Microorganisms, 11(6), 1489.

Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6, 628-647.

Gunti, S., Kumar, A., & Ram, M. K. (2018). Nanostructured photocatalysis in the visible spectrum for the decontamination of air and water. International Materials Reviews, 63(4), 257-282.

Singh, K. K. (2022). Role of Nanotechnology and Nanomaterials for Water Treatment and Environmental Remediation. International Journal of New Chemistry, 9(3), 165-190. doi: 10.22034/ijnc.2022.3.6

Downloads

Published

2024-04-30

How to Cite

aldulaimi, tsahel, shaker AL-hindi , Z., & Sabah Al-Musawi, H. (2024). A Review Bio-Nanotechnology and Nanoparticles Applications in Biology: Bio-Nanotechnology. Al-Kufa University Journal for Biology, 16(1), 44–49. https://doi.org/10.36320/ajb/v16.i1.13948

Similar Articles

You may also start an advanced similarity search for this article.