The Effect of Body Weight Gain with or Without Diabetes Type 2 on the Levels of Noradrenalin and Some Neurotrophins


  • Hawraa Hasan College of Science, Mustansiriyah University, Bagdad, Iraq
  • jamela jouda College of Science, Mustansiriyah University, Bagdad, Iraq
  • Saihood Y. D. National Diabetes Center, Mustansiriyah University, Bagdad, Iraq



BMI, diabetes, obes, BDNF, neurotrophins


This work aimed to study the effect of body weight gain in individuals with or without diabetes mellitus Type 2 (DMT2) on the nervous system. Seventy-five subjects participated in this study, including 25 obese patients with DMT2 (BMI≥30kg/m2), 25 obese individuals without diabetes (BMI≥30kg/m2) and normal-weight healthy (BMI˂25kg/m2). In addition to body mass index (BMI), the west/hip ratio (WHR) and total body fat (TBF%) were calculated. 10ml of blood was collected from participants and used to determine the levels of HbA1C, noradrenaline (NA), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and fasting blood glucose (FBG). The level of NGF increased while BDNF and NA levels decreased in obese with and without diabetes compared to control. Interestingly, BDNF level was significantly higher in the obese with diabetes than without. Moreover, TBF% and WHR values were significantly higher in the obese with diabetes when compared with those without diabetes. At the same time, there were no significant differences between BMI value in these two groups. BMI, TBF% and WHR significantly correlate with FBG, HbA1C and NGF and negative significant correlation with BDNFdoes not correlate; only WHR has no correlationdoes and does not correlate with NA. As well as, HbA1C has a significant correlation with the nerve markers, positive with BDNF and NGF and negative with NA, while FBG did not correlate with them. In conclusion, neurotransmitters and neurotrophin levels could use as risk factors for diabetes, and obesity could be considered as a risk factor for neuropathy as much as diabetes.


Download data is not yet available.


Dabies, M. S. (2017). The Inflammatory Response to Acute Exercise in obese and non-obese subjects. M.Sc. of clinical physiology. Medical Research Institute. Alex.Univ. Egypt.

Swinburn, B. A., Sacks, G., Hall, K. D., McPherson, K., Finegood, D. T., Moodie, M. L., & Gortmaker, S. L. (2011). The global obesity pandemic: shaped by global drivers and local environments. The Lancet, 378(9793), 804–814.

Pfisterer, J., Rausch, C., Wohlfarth, D., Bachert, P., Jekauc, D., & Wunsch, K. (2022). Effectiveness of Physical-Activity-Based Interventions Targeting Overweight and Obesity among University Students A Systematic Review. International Journal of Environmental Research and Public Health, 19(15), 9427.‏

Nuttall, F. Q. (2015). Body mass index: Obesity, BMI, and health: A critical review. Nutrition Today, 50(3), 117–128.

Esler, M., Rumantir, M., Wiesner, G., Kaye, D., Hastings, J., & Lambert, G. (2001). Sympathetic nervous system and insulin resistance: from obesity to diabetes. American journal of hypertension, 14(S7), 304S-309S.‏

Saltiel, A. R., & Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. The Journal of clinical investigation, 127(1), 1-4.

‏Huang, X., Liu, G., Guo, J., & Su, Z. (2018). The PI3K/AKT pathway in obesity and type 2 diabetes. Intern -ational journal of biological sciences , 14(11), 1483.‏

Padhi S, Nayak AK, Behera A. (2020). Type II diabetes mellitus: A review on recent drug-based therapeutics. Biom -edicine & Pharmacotherapy.;131:110708.

Gerozissis, K. (2008). Brain insulin, ener -gy and glucose homeostasis; genes, environment and metabolic patholo -gies. European journal of pharmacy -ology, 585(1), 38-49.‏

Weyer, C., Bogardus, C., Mott, D. M., & Pratley, R. E. (1999). The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. The Journal of clinical investiga -tion, 104(6), 787-794.‏

Hang, P. Z., Zhu, H., Li, P. F., Liu, J., Ge, F. Q., Zhao, J., & Du, Z. M. (2021). The emerging role of BDNF/TrkB signaling in cardiovascular diseases. Life, 11(1), 70.‏

Aarão, T. L. D. S., de Sousa, J. R., Falcão, A. S. C., Falcão, L. F. M., & Quaresma, J. A. S. (2018). Nerve growth factor and pathogenesis of leprosy: review and update. Frontiers in immunology, 9, 939.

Ding, X. W., Li, R., Geetha, T., Tao, Y. X., & Babu, J. R. (2020). Nerve growth factor in metabolic complications and Alzheimer's dise -ase: Physiology and therapeutic poten -tial. Biochimica et Bioph ysica Acta (BBA)-Molecular Basis of Disease, 1866(10), 165858.‏

Schinke, C., Hesse, S., Rullmann, M., Becker, G-A., Luthardt, J., Zientek, F., Patt, M., Stoppe, M., Schmidt, E., Meyer, K., Meyer, P, M., Orthgie ß, J., Blüher, M., Kratzsch,J., Ding,Y,S., Bergh F,H., & SabriQ. (2019). Central noradrenaline transporter availability is linked with HPA axis responsiveness and copeptin in human obesity and non-obese controls . Stress, 22(1), 93-102.‏

Barreira, T. V., Harrington, D. M., Staiano , A. E., Heymsfield, S. B., & Katzmarzyk, P. T. (2011). Body adiposity index, body mass index, and body fat in white and black adults. Jama, 306(8), 828-830.‏

World Health Organization. (2011). Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8-11 December 2008.‏

Weststrate, J. A., & Deurenberg, P. (1989). Body composition in children: propo -sal for a method for calculating body fat percentage from total body density or skinfold-thickness measureme -nts. The American journal of clinical nutrition, 50(5), 1104-1115.

Alawad, A. O., Merghani, T. H., & Ballal, M. A. (2013). Resting metabolic rate in obese diabetic and obese non-diabetic subjects and its relation to glycaemic control. BMC research notes, 6(1), 1-5.

Ghazanfari, Z., Haghdoost, A. A., Alizadeh, S. M., Atapour, J., & Zolala, F. (2010). A comparison of HbA1c and fasting blood sugar tests in general population . International journal of preventive medic -ine, 1(3), 187.‏

Asfandiyarova, N. S. (2015). A review of mortality in type 2 diabetes mellitus. Diabetes mellitus, 18(4), 12-21.

Swetha, N. K. (2014). Comparison of fasting blood glucose & post prandial blood glucose with HbA1c in assessing the glycemic control. International J of Healthcare and Biomedical Research, 2(3), 134-9.

Lotfi, H., Pirmoradi, S., Mahmoudi, R., Teshnehlab, M., Sheervalilou, R., Fekri Aval, S., & Zarghami, N. (2020). Machine learning as new promising technique for selection of significant features in obese women with type 2 diabetes. Hormone molecular biology and clinical investigation, 41(1), 20190019.‏

Vatansever Z, Özsoylu S, Kendirci M, Akyıldız B. (2020). The effect ofThiaminepyrophosphate Levels on Mortality and Morbidity in Patients with Stress Hyperglycemia. The Journal of Pediatric Academy.;1(1):25-9.

Alshayban, D., & Joseph, R. (2020). Health-related quality of life among patients with type 2 diabetes mellitus in Eastern Province, Saudi Arabia: A cross-sectional study. PloS one, 15(1), e0227573.‏

Alam, R., Verma, M. K., & Verma, P. (2015). Glycated hemoglobin as a dual biomarker in type 2 diabetes mellitus predicting glycemic control and dyslipidemia risk. International Journal of Life-Sciences Scientific Research (IJLSSR) , 189(8.07),164-89.

Swetha, N. K. (2014). Comparison of fasting blood glucose & post prandial blood glucose with HbA1c in assessing the glycemic control. International J of Healthcare and Biomedical Research, 2(3), 134-9.‏

Li, B., Lang, N., & Cheng, Z. F. (2016). Serum levels of brain-derived neurot -rophic factor are associated with diabetes risk, complications, and obesity: a cohort study from Chinese patients with type 2 diabetes. Molecular neurobiology, 53, 5492-5499.‏

Lebrun, B., Bariohay, B., Moyse, E., & Jean, A. (2006). Brain-derived neurotro -phic factor (BDNF) and food intake regulation: a minireview. Autonomic Neur -oscience, 126, 30-38.‏

Kernie, S. G., Liebl, D. J., & Parada, L. F. (2000). BDNF regulates eating behavior and locomotor activity in mice. The EMBO journal, 19(6), 1290-1300.

Lyons,W,E., Mamounas,L,A., G,A., Ricaurte, Coppola,V., Reid,S,W., Bora, S, H., Vassilis ,C,W.,E, K.,& Tessar ollo,L.(1999). Brain-derived neurotrophic factor-deficient mice develop aggressive eness and hyperphagia in conjunction with brain serotonergic abnormali ties. Procee dings of the National Academy of Sciences, 96(26), 15239-15244.

Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., Tecott,H,L., & Reichardt, L. F. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature neuroscience, 6(7), 736-742.

Motamedi, S., Karimi, I., & Jafari, F. (2017). The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone. Metabolic brain disease, 32, 651-665.

Apfel, S. C., Kessler, J. A., Adomato, B. T., Litchy, W. J., Sanders, C., & Rask, C. A. (1998). A randomized double-blind, placebo controlled trial of recombinant human nerve growth factor in symptom -matic diabetic polyneuropathy with small fiber sensory loss. Neurology, 51, 1-8.‏

Bulló, M., Peeraully, M. R., Trayhurn, P., Folch, J., & Salas-Salvadó, J. (2007). Circulating nerve growth factor levels in relation to obesity and the metabolic syndrome in women. European Journal of Endo -crinology, 157(3), 303-310.

Anand, P., Terenghi, G., Warner, G., Kopelman, P., Williams-Chestnut, R. E., & Sinicropi, D. V. (1996). The role of endogenous nerve growth factor in human diabetic neuropathy. Nature medicine -, 2(6), 703-707.‏

Kerschensteiner, M., Gallmeier, E., Behr ens, L., Leal ,V,V., Misgeld, T., Klinkert ,W,E., Kolbeck, R., Hoppe, E., Oropeza-Wekerle, R,L., Bartke, I., Stadelmann, C., Lassmann, H, Wekerle, H., & Hohlfeld R. )1999 ( Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprote ctive role of Inflammation? Journal of Experimental Medicine , 189 865–870.

Moalem, G., Gdalyahu, A., Shani, Y., Otten, U., Lazarovici, P., Cohen, I. R., & Schwartz, M. (2000). Production of neurotrophins by activated T cells: implications for neuropr otective autoimm unity . Journal of aut -oimmunity, 15(3), 331-345.

‏Nocker WA & Renz H. (2005) Neurotr ophins in clinical diagnostics: pathophysi ology and laboratory investigation. Clinica Chimica Acta,2005 352 49–74

Jouda, J. A. K. (2013). The absence of a functional thymus is associated with alterations in peripheral and central neurotransmitters and neurotrophins.‏

Landsberg, L. (1986). Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis. QJM: An International Journal of Medicine, 61(3), 1081-1090.

O'Dea, K., Esler, M., Leonard, P., Stockigt, J. R., & Nestel, P. (1982). Noradrenaline turnover during under-and over-eating in normal weight subjects. Metabolism, 31(9), 896-899.

Young, J. B., Saville, E., Rothwell, N. J., Stock, M. J., & Landsberg, L. (1982). Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. The Journal of clinical investigation, 69(5), 1061-1071.

Landsberg, L., & Krieger, D. R. (1989). Obesity, metabolism, and the sympathetic nervous system. American journal of hypertension, 2(3_Pt_2), 125S-132S.

Levin, B. E., Triscari, J., & Sullivan, A. C. (1981). Defective catecholamine metabolism in peripheral organs of genetically obese Zucker rats. Brain research, 224(2), 353-366.

Sowers, J. R., Whitfield, L. A., Catania, R. A., Stern, N., Tuck, M. L., Dornfeld, L., & Maxwell, M. (1982). Role of the sympathetic nervous system in blood pressure maintenance in obesity. The Journal of Clinical Endocrinology & Metabolism, 54(6), 1181-1186.

Reisin, E., Frohlich, E. D., Messerli, F. H., Dreslinski, G. R., Dunn, F. G., Jones, M. M., & Batson Jr, H. M. (1983). Cardiovascular changes after weight reduction in obesity hypertension. Annals of Internal Medicin -e, 98(3), 315-319.

DeHaven, J., Sherwin, R., Hendler, R., & Felig, P. (1980). Nitrogen and sodium balance and sympathetic-nervous-system activity in obese subjects treated with a low-calorie protein or mixed diet. New England journal of medi -cine, 302(9), 477-482.

Folkow, B., Di Bona, G. F., Hjemdahl, P., Toren, P. H., & Wallin, B. G. (1983). Measurements of plasma norepinephrine concentrations in human primary hypertension. A word of caution on their applicability for assessing neurogenic contributions. Hypertension, 5(4), 399-403.

Esler, M. D., Hasking, G. J., Willett, I. R., Leonard, P. W., & Jennings, G. L. (1985). Noradrenaline release and sympathetic nervous system activity. Journal of hypertension, 3(2), 117-129.

Vallbo, A. B., Hagbarth, K. E., Torebjork, H. E., & Wallin, B. G. (1979). Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiological reviews, 59(4), 919-957.

Spraul, M., Ravussin, E., Fontvieille, A. M., Rising, R., Larson, D. E., & Anderson, E. A. (1993). Reduced sympathetic nervous activity. A potential mechanism predisposing to body weight gain. The Journal of clinical investigation, 92(4), 1730-1735.

Rina, A., Burhan, B. B., & Aznan, L. (2018). The relationship between anthropometry and ankle-brachial index with blood glucose level in patients with type 2 diabetes mellitus at the Community Health Center in Medan, Indonesia. Family Medicine & Primary Care Review, (4), 307-312.

Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A., & Sakharkar, M. K. (2016). Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker insights, 11, BMI-S38440.

Wu, J., Gong, L., Li, Q., Hu, J., Zhang, S., Wang, Y., Zhou,H.,Yang,S., & Wang, Z. (2017). A novel visceral adiposity index for prediction of type 2 diabetes and pre-diabetes in Chinese adults: a 5-year prospective study. Scientific Reports, 7(1), 13784.‏

Wei, J., Liu, X., Xue, H., Wang, Y., & Shi, Z. (2019). Comparisons of visceral adiposity index, body shape index, body mass index and waist circumference and their associations with diabetes mellitus in adults. Nutrients, 11(7), 1580.‏

Bhowmik, B., Munir, S. B., Diep, L. M., Siddiquee , T., Habib, S. H., Samad, M. A., Azad Khan, A,K., & Hussain, A. (2013). Anthropometric indicators of obesity for identifying cardiometabolic risk factors in a rural B angladeshi population. Journal of diabetes investigation, 4(4), 361-368.

‏Vazquez, G., Duval, S., Jacobs Jr, D. R., & Silventoinen, K. (2007). Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiologic reviews, 29(1), 115-128.‏

Hou, X., Chen, S., Hu, G., Chen, P., Wu, J., Ma, X., Yang,Z., Yang ,W.,& Jia, W. (2019). Stronger associations of waist circumference and waist-to-height ratio with diabetes than BMI in Chinese adults. Diabetes research and clinical practice, 147, 9-18.

Hartwig, S., Kluttig, A., Tiller, D., Fricke, J., Müller, G., Schipf, S., Völzke, H., Schunk, M., Meisinger, C., Schienkiewitz, A., Heidemann, C., Moebus, S., Pechlivanis, S., Werdan, K., Kuss, O., Tamayo, T., Haerting, J.,& Greise, K, H. (2016). Anthropometric markers and their association with incident type 2 diabetes mellitus: which marker is best for prediction? Pooled analysis of four German population-based cohort studies and comparison with a nationwide cohort study. BMJ open, 6(1), e009266.‏

Fan, Y., Wang, R., Ding, L., Meng, Z., Zhang, Q., Shen, Y., Gang, H.& Liu, M. (2020). Waist circumference and its changes are more strongly associated with the risk of type 2 diabetes than body mass index and changes in body weight in Chinese adults. The journal of nutrition, 150(5), 1259-1265.‏

Cheng, C. H., Ho, C. C., Yang, C. F., Huang, Y. C., Lai, C. H., & Liaw, Y. P. (2010). Waist-to-hip ratio is a better anthropometric index than body mass index for predicting the risk of type 2 diabetes in Taiwanese populati -on. Nutrition Research, 30(9), 585-593.‏




How to Cite

Hasan, H., jouda, jamela, & Saihood , Y. D. (2023). The Effect of Body Weight Gain with or Without Diabetes Type 2 on the Levels of Noradrenalin and Some Neurotrophins. Al-Kufa University Journal for Biology, 15(2), 32–41.