Relationship of body mass index (BMI) to dyslipidemia in Type2 diabetes mellitus

Authors

  • Fadhil A. Nasser
  • Abdulhussain A. Algenabi
  • Ali M. Kadhim

DOI:

https://doi.org/10.36320/ajb/v11.i1.8041

Keywords:

T2DM, BMI, lipid profile

Abstract

T2DM is a chronic disease characterized by hyperglycemia as a result of insulin dysfunction. Both Dyslipidemia and obesity are considered cardinal features of T2DM. 

Aims: To study the relationship of BMI with serum lipid profile in T2DM patients.

Methods: The study consisted of 200 T2DM patients and 200 control individuals. Phenotypic parameters included are body mass index (BMI), and fasting blood sugar (FBS) and lipid profile.

Results :The statistical analyses   used to analyze the data.A significant positive correlation of serum TC, TG and LDL levels and significantly negative correlation of serum HDL levels with BMI in patients with T2DM (p<0.001).

Conclusion: Dyslipidemiaare associated with BMI in T2DM.

Downloads

Download data is not yet available.

References

An R. Prevalence and trends of adult obesity in the US, 1999–2012. ISRN Obese. 2014;2014:24–29.

Legal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–497.

de Wilde JA, Zandbergen-Harlaar S, van Buuren S, Middelkoop BJ. Trends in body mass index distribution and prevalence of thinness, over¬weight and obesity in two cohorts of Surinamese South Asian children in The Netherlands. Arch Dis Child. 2013;98(4):280–285.

Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults e the evidence report. National Institutes of Health. Obes Res 1998; 6(Suppl 2): 51se209s.

JA Kayode, AO Sola, AS Matthew, BO Adesola, I Ademola, AT Adedeji and AS Adelani. Lipid profile of type 2 diabetic patients at a rural tertiary hospital in Nigeria. Journal of Diabetes and Endocrinology, 1(4), 2010, 46-51.

Passey RB, Gillum RL, Fuller JB, et al. Evaluation and comparison of ten glucose methods and the reference method recommended in the proposed product class standard. Clinical Chemistry.1977; 23: 131–139.

Trinder P. Ann. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Clinical of biochemistry1969;6:24-25.

Friedewald WT, Levy RI and Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. 1972; 18:499 –502.

Young DC. Effect of drug on clinical laboratory test. Fourth edition. 1995; 3:143 –164.

Fossati P and Principe L. Serum triglyceride determined colorimetrically with an enzyme that produce hydrogen peroxide. Clinical chemistry.1982; 28:2077–2080.

Tietz NW. textbook of clinical chemistry. Third edition. Burits CA, Ashwood ER, Saunder WB.1999; 819 – 861.

Friedewald WT, Levy RI and Fredrickson DS. Estimation of the concentrationof low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. 1972; 18:499 –502.

MA Devi, NS Singh, and SS Singh. Thyroid Dysfunction in Type 2 Diabetic Patients in Urban Area of Minipur. International Journal of Pharmaceutical Invention, 2, 2013, 7-9.

CEJ Udiong, MH Etukudoh, IK Isong, and EF Udoisa. Evaluation of BMI and Lipids Profile in Type 2 Diabetic Subjects with Low and Raised Levels of Thyroid Hormone in Calabar, Nigeria. Journal of Diabetes Mellitus, 5, 2015, 277-283.

HS Sandhu, S Koley and KS Sandhu. A Study of Correlation between Lipid Profile and Body Mass Index (BMI) in Patients with Diabetes Mellitus. J. Hum. Ecol. 24(3), 2008, 227-229

Vazquez LA, Rodríguez A, Salvador J. Relationships between obesity, glycaemic control, and cardiovascular risk factors: a pooled analysis of cross-sectional data from Spanish patients with type 2 diabetes in the preinsulin stage.

BMC Cardiovascular Disorders. 2014; 14: 153.

Ram N, Ahmed B, Hashmi F, Jabbar A. Importance of measuring Non-HDL cholesterol in type 2 diabetes patients. J Pak Med Assoc. 2014; 64: 124-128.

Hassan MM, Sharaf SA, Soliman HM, Al-Wakeel NA. Dyslipidemia: A Cardiovascular Risk Factor in Type 1 Diabetes and Its Correlations. J Diabetes Metab. 2015; 6:586.

Borggreve SE, De Vries R, Dullaart RP. Alterations in high-density lipoprotein metabolism and reerse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolyticenymes, lecithin: cholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest. 2003; 331051-1069.

Aljabri KS, Bokhari SA, Akl A. The Relation between Overweight, Obesity and Plasma Lipids in Saudi Adults with Type 2 Diabetes. Int J Diabetes Clin Res. 2015; 2: 33.

Kuryan RE, Jacobson MS, Frank GR. Non-HDLcholesterol in an adolescent diabetes population. Jour CliniLipidol. 2014; 8: 194–1 98.

Eliasson B, Gudbjornsdottir S, Zethelius B, Eeg-Olofsson K and Cederholm J (2014). LDL-cholesterol versus non- HDL-to-HDLcholesterol ratio and risk for coronary heart disease in type 2 diabetes. Euro JournPrevenCardiol. 2014; 21: 1420–1428.

Boden, G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 139–143.

Zalesin, K.C.; Franklin, B.A.; Miller, W.M.; Peterson, E.D.; McCullough, P.A. Impact of obesity on cardiovascular disease. Med. Clin. North. Am. 2011, 95, 919–937.

Castro Cabezas, M.; Elte, J.W. Farewell to the metabolic syndrome? Not too soon. Atherosclerosis 2009, 204, 348–349; author reply 350–351.

Franssen, R.; Monajemi, H.; Stroes, E.S.; Kastelein, J.J. Obesity and dyslipidemia. Med. Clin. North. Am. 2011, 95, 893–902.

Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat ClinPractEndocrinolMetab. 2009;5:150–9.

Mooradian AD, Haas MJ, Wehmeier KR, Wong NC. Obesityrelated changes in high density lipoprotein metabolism. Obesity.2008;16:1152–60.

Mooradian AD, Haas MJ, Wong NC. Transcriptional control of apolipoprotein A-I gene expression in diabetes mellitus.Diabetes 2004;53:513–20.

Haas MJ, Mooradian AD. Regulation of high-density lipoprotein by inflammatory cytokines: establishing links between immune dysfunction and cardiovascular disease. Diabetes Metab Res Rev. 2010;26:90–9.

Capell, W.H.; Zambon, A.; Austin, M.A.; Brunzell, J.D.; Hokanson, J.E. Compositional differences of LDL particles in normal subjects with LDL subclass phenotype A and LDL subclass phenotype B. ArteriosclerThromb. Vasc. Biol. 1996, 16, 1040–1046.

Hokanson, J.E.; Krauss, R.M.; Albers, J.J.; Austin, M.A.; Brunzell, J.D. LDL physical and chemical properties in familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 452–459.

Bjorntorp, P.; Bergman, H.; Varnauskas, E. Plasma free fatty acid turnover rate in obesity. Acta Med. Scand. 1969, 185, 351–356.

Van Oostrom, A.J.; van Dijk, H.; Verseyden, C.; Sniderman, A.D.; Cianflone, K.; Rabelink, T.J.; Castro Cabezas, M. Addition of glucose to an oral fat load reduces postprandial free fatty acids and prevents the postprandial increase in complement component 3. Am. J. Clin. Nutr. 2004, 79, 510–515.

Capurso, C.; Capurso, A. From excess adiposity to insulin resistance: The role of free fatty acids. Vascul. Pharmacol. 2012, 57, 91–97.

Lottenberg, A.M.; AfonsoMda, S.; Lavrador, M.S.; Machado, R.M.; Nakandakare, E.R. The role of dietary fatty acids in the pathology of metabolic syndrome. J. Nutr. Biochem. 2012, 23, 1027–1040.

Sears, B.; Ricordi, C. Role of fatty acids and polyphenols in inflammatory gene transcription and their impact on obesity, metabolic syndrome and diabetes. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1137–1154.

Kopp, A.; Gross, P.; Falk, W.; Bala, M.; Weigert, J.; Buechler, C.; Neumeier, M.; Scholmerich, J.; Schaffler, A. Fatty acids as metabolic mediators in innate immunity. Eur. J. Clin. Invest. 2009, 39, 924–933.

Patalay, M.; Lofgren, I.E.; Freake, H.C.; Koo, S.I.; Fernandez, M.L. The lowering of plasma lipids following a weight reduction program is related to increased expression of the LDL receptor and lipoprotein lipase. J. Nutr. 2005, 135, 735–739.

Thomas, T.R.; Horner, K.E.; Langdon, M.M.; Zhang, J.Q.; Krul, E.S.; Sun, G.Y.; Cox, R.H. Effect of exercise and medium-chain fatty acids on postprandial lipemia. J. Appl. Physiol. 2001, 90, 1239–1246.

Ferguson, M.A.; Alderson, N.L.; Trost, S.G.; Essig, D.A.; Burke, J.R.; Durstine, J.L. Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J. Appl. Physiol. 1998, 85, 1169–1174.

Harrison, M.; Moyna, N.M.; Zderic, T.W.; O’Gorman, D.J.; McCaffrey, N.; Carson, B.P.; Hamilton, M.T. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise. Lipids. Health Dis. 2012, 11, doi:10.1186/1476-511X-11-64.

Maki, K.C.; Pelkman, C.L.; Finocchiaro, E.T.; Kelley, K.M.; Lawless, A.L.; Schild, A.L.; Rains, T.M. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J. Nutr. 2012, 142, 717–723.

Klop, B.; Castro Cabezas, M. Chylomicrons: A key biomarker and risk factor for cardiovascular disease and for the understanding of obesity. Curr. Cardiovasc. Risk. Rep. 2012, 6, 27–34.

Downloads

Published

2019-02-10

How to Cite

A. Nasser, F., A. Algenabi, A., & M. Kadhim, A. (2019). Relationship of body mass index (BMI) to dyslipidemia in Type2 diabetes mellitus. Al-Kufa University Journal for Biology, 11(1), 39–47. https://doi.org/10.36320/ajb/v11.i1.8041

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.