Genetic susceptibility associated with toxoplasmosis; genetic polymorphism, molecular and immunological study

Authors

  • Raad Abbas Kadhim
  • Ali Hussein Al-Marzoqi
  • Zahraa Mohammed Al-Taee

DOI:

https://doi.org/10.36320/ajb/v8.i2.9275

Keywords:

Toxoplasmosis, Toxoplasma gondii, IFN γ, TLR, TUB1

Abstract

In the present study 258 blood samples were gathered from the gynecology wards in Babylon hospital for children and maternity and out private clinic from Babylon and Baghdad province during the period from September 2014 to January 2015 for investigation on toxoplasmosis infections and the  study effect of  genes modifications on infection susceptibility by parasite. this research was carried out in laboratory of genetic researches in College of Science for girls- Babylon university .

Expression of many cytokines like TNF-α and IL- 1β and genes like ALOX12 through infection with Toxoplasma gondii were revealed modifies as a result in this study. Genotypic and allelic frequency of IFN-γ +874 T/A were statistically differences in relation to the occurrence of the A allele in many cases of parasitic infection. Genetic frequency of sag4 gene among patients was higher than control 10.7% and 1.3%, respectively. The genetic profiling of TLRs revealed that TLR11 and TLR12 was 21.1% and 21.7%, respectively, also the genetic profiling of TUB1 and FOL1 revealed that TUB1 and FOL1 was 19.2% and 16.4% respectively, while IL-6 and IL-1β genes was 14.8%, 12.9% in that order.

Downloads

Download data is not yet available.

References

Montoya J.M, Liesenfeld O. Toxoplasmosis. Lancet. 2004; 363: 1965-1976. DOI: https://doi.org/10.1016/S0140-6736(04)16412-X

Weiss L.W, Dubey J.P. Toxoplasmosis: A history of clinical observations. Int J Parasitol. 2009; 39: 895–901. DOI: https://doi.org/10.1016/j.ijpara.2009.02.004

Zare F, Dalimi A, Ghaffarifar F. Detection of active Toxoplasma godii (RH strain) in the different body tissues of experimentally infected rats. Modares J Med Sci. 2006; 9(1):19-23.

Maubon D, Ajzenberg D, Brenier-Pinchart MP, Darde ML, Pelloux H. What are the respective host and parasite contributions to toxoplasmosis? Trends Parasitol. 2008; 24: 299-303. DOI: https://doi.org/10.1016/j.pt.2008.03.012

Vallochi A.L, Muccioli C, Cristina Martins M, Silveira C, Belfort R, Vicente Rizzo L. The Genotype of Toxoplasma gondii Strains Causing Ocular Toxoplasmosis in Humans in Brazil. Am J Ophthalmol. 2005; 139: 350–351. DOI: https://doi.org/10.1016/j.ajo.2004.07.040

Ajzenberg D, Cogne N, Paris L, Bessieres M.H, Thulliez P, Fillisetti D, Pelloux H, Marty P, Darde´ M.L. Genotype of 86 Toxoplasma gondii isolates associated with human congenital toxoplasmosis and correlation with clinical findings. J Infect Dis. 2002; 186:684–689. DOI: https://doi.org/10.1086/342663

Khan A, Su C, German M, Storch G.A, Clifford D.B, Sibley L.D. Genotyping of Toxoplasma gondii strains from immunocompromised patients reveals high prevalence of type I strains. J Clin Microbiol. 2005; 43(12):5881-7. DOI: https://doi.org/10.1128/JCM.43.12.5881-5887.2005

Howe, D.K. and Sibley, L.D. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis. 1995; 172, 1561-1566. DOI: https://doi.org/10.1093/infdis/172.6.1561

Wan, K.L., Blackwell, J.M. and Ajioka, J.W. Toxoplasma gondii expressed sequence tags: insight into tachyzoite gene expression. Mol Biochem Parasitol. 1996; 75, 179-186. DOI: https://doi.org/10.1016/0166-6851(95)02524-3

Coppens, I. and Joiner, K.A. Parasite–hostcell interactions in toxoplasmosis: new avenues for intervention. Exp Rev Mol Med 15 January. 2000. http://www-ermm.cbcu.cam.ac.uk/ 01002277h.htm

Aliberti J. Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii. Nature Rev Immunol 2005; 5: 162–170. DOI: https://doi.org/10.1038/nri1547

Ali H. Al-Marzoqi, Raad A. Kadhim, D. Al-Janabi, H. J. Hussein, Zahraa M. Al Taee. Seroprevalence study of IgG and IgM Antibodies to Toxoplasma, Rubella, Cytomegalovirus, Chlamydia trachomatis and Herpes simplex II in Pregnancy women in Babylon Province Journal of Biology, Agriculture and Healthcare. 2012. 2 (10), 159-164.

Cavaillès P, Bisanz C, Papapietro O, Colacios C, Sergent V, Pipy B, Saoudi A, Cesbron-Delauw M-F, Fournié G.J. The rat Toxo1 locus controls the outcome of the toxoplasmic infection according to a Mendelian mode. Med. Sci. (Paris). 2006; 22:679–680. 4. Cavaillès P, Sergent V, Bisanz C, Papapietro O, Colacios C, Mas M, DOI: https://doi.org/10.1051/medsci/20062289679

Subra J.F, Lagrange D.D, Calise MM, Appolinaire S.S, Faraut TT, Druet P.P, Saoudi A.A, Bessieres M.H, Pipy B, Cesbron-Delauw M.F, Fournié G.J. The rat Toxo1 locus directs toxoplasmosis outcome and controls parasite proliferation and spreading by macrophage-dependent mechanisms. Proc. Natl. Acad. Sci. U. S. A. 2006; 103:744–749. DOI: https://doi.org/10.1073/pnas.0506643103

Brash A.R. Arachidonic acid as a bioactive molecule. J. Clin. Invest. 2001; 107:1339–1345. DOI: https://doi.org/10.1172/JCI13210

Cordeiro C.A, Moreira P.R, Costa G.C, Dutra W.O, Campos W.R, Orefice F, et al. Interleukin-1 gene polymorphisms and toxoplasmic retinochoroiditis. Mol Vis 2008; 14:1845-1849.

Pravica V, Perrey C, Stevens A, Lee J.H, Hutchinson I.V. A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 2000; 61:863-866.

Pacheco A.G, Cardoso CC, Moraes MO. IFNG +874T/A, IL10 -1082G/A and TNF -308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study. Hum Genet 2008; 123:477-484.

Salih M.A, Ibrahim M.E, Blackwell JM, Miller EN, Khalil EA., ElHassan A.M, et al. IFNG and IFNGR1 gene polymorphisms and susceptibility to post-kala-azar dermal leishmaniasis in Sudan. Genes Immun 2007; 8:75-78.

West, A.P., Koblansky, A.A., and Ghosh, S. Recognition and signaling by toll-like receptors. Annu. Rev. Cell Dev. Biol. 2006. 22, 409–437. DOI: https://doi.org/10.1146/annurev.cellbio.21.122303.115827

Gazzinelli, R.T., Hieny, S., Wynn, T.A., Wolf, S., and Sher, A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc. Natl. Acad. Sci. USA. 1993; 90, 6115–6119. DOI: https://doi.org/10.1073/pnas.90.13.6115

Reis e Sousa, C., Hieny, S., Scharton-Kersten, T., Jankovic, D., Charest, H., Germain, R.N., and Sher, A. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 1997.186, 1819–1829. DOI: https://doi.org/10.1084/jem.186.11.1819

Yap, G., Pesin, M., and Sher, A. Cutting edge: IL-12 is required for the maintenance of IFN-gamma production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J. Immunol. 2000. 165, 628–631. DOI: https://doi.org/10.4049/jimmunol.165.2.628

Suzuki, Y., Orellana, M.A., Schreiber, R.D., and Remington, J.S. (1988). Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 240, 516–518. DOI: https://doi.org/10.1126/science.3128869

Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003.3, 133–146. DOI: https://doi.org/10.1038/nri1001

Liu, C.H., Fan, Y.T., Dias, A., Esper, L., Corn, R.A., Bafica, A., Machado, F.S., and Aliberti, J. Cutting edge: dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice. J. Immunol. 2006. 177, 31–35. DOI: https://doi.org/10.4049/jimmunol.177.1.31

Mashayekhi, M., Sandau, M.M., Dunay, I.R., Frickel, E.M., Khan, A., Goldszmid, R.S., Sher, A., Ploegh, H.L., Murphy, T.L., Sibley, L.D., and Murphy, K.M. CD8a(+) dendritic cells are the critical source of interleukin- 12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity. 2011. 35, 249–259.

Meredith, M.M., Liu, K., Darrasse-Jeze, G., Kamphorst, A.O., Schreiber, H.A., Guermonprez, P., Idoyaga, J., Cheong, C., Yao, K.H., Niec, R.E., and Nussenzweig, M.C. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 2012 .209, 1153–1165. DOI: https://doi.org/10.1084/jem.20112675

SABREEN A. A. KAMAL, RUQAYA M. J. AWADH, ALI H. M. Al-MARZOQI. Genetic study of TORCH infections in women with bad obstetric history: multiplex polymerase chain reaction for detection of common pathogens and agents of congenital infections. Journal of Biology, Agriculture and Healthcare. 2013; 3 (18), 49-53

Jamieson SE, de Roubaix LA, Cortina-Borja MM, Tan HK, Mui E, Cordell HJ, Kirisits MJ, Miller EN, Peacock CS, Hargrave AC, Coyne JJ, Boyer K, Bessieres MH, Buffolano W, Ferret N, Franck J, Kieffer F, Meier P, Nowakowska DE, Paul M, Peyron F, Stray-Pedersen B, Prusa AR, Thulliez P, Wallon M, Petersen E, McLeod R, Gilbert RE, Blackwell JM. 2008. Genetic and epigenetic factors at COL2A1 and ABCA4 influence clinical outcome in congenital toxoplasmosis. PLoS One 3:e2285. DOI: https://doi.org/10.1371/journal.pone.0002285

Witola W.H, Mui E, Hargrave A, Liu S, Hypolite M, Montpetit A, Cavailles P, Bisanz C, Cesbron-Delauw M-F, Fournié G.J, McLeod R. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondiiinfected monocytic cells. Infect. Immun. 2011. 79:756–766.

Maccarrone M, Melino G, Finazzi-Agro A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ. 2001.8:776– 784. DOI: https://doi.org/10.1038/sj.cdd.4400908

Wen Y, Gu J, Vandenhoff G.E, Liu X, Nadler J.L. Role of 12/15- lipoxygenase in the expression of MCP-1 in mouse macrophages. Am J. Physiol. Heart Circ. Physiol. 2008. 294:H1933–H1938. DOI: https://doi.org/10.1152/ajpheart.00260.2007

Li J, Wang H, Rosenberg P.A. Vitamin K prevents oxidative cell death by inhibiting activation of 12-lipoxygenase in developing oligodendrocytes. J. Neurosci. Res. 2009. 87:1997–2005. DOI: https://doi.org/10.1002/jnr.22029

Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 2003. 4:95–104. DOI: https://doi.org/10.1038/nrm1019

Ma K, Nunemaker CS, Wu R, Chakrabarti SK, Taylor-Fishwick DA, Nadler JL. 12-Lipoxygenase products reduce insulin secretion and _-cell viability in human islets. J. Clin. Endocrinol. Metab. 2010. 95:887–893. DOI: https://doi.org/10.1210/jc.2009-1102

Phillis J.W, Horrocks LA, Farooqui A.A. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 2006. 52:201–243. DOI: https://doi.org/10.1016/j.brainresrev.2006.02.002

Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV. A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 2000; 61:863-866. DOI: https://doi.org/10.1016/S0198-8859(00)00167-1

Albuquerque M.C, Aleixo AL, Benchimol E.I, Leandro A.C, Neves L.B, Vicente R.T, et al. The IFN-gamma +874T/A gene polymorphism is associated with retinochoroiditis toxoplasmosis susceptibility. Mem Inst Oswaldo Cruz 2009; 104:451-455. DOI: https://doi.org/10.1590/S0074-02762009000300009

Pacheco A.G, Cardoso C.C, Moraes M.O. IFNG +874T/A, IL10 -1082G/A and TNF -308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study. Hum Genet 2008; 123:477-484. DOI: https://doi.org/10.1007/s00439-008-0497-5

Salih M.A, Ibrahim M.E, Blackwell J.M, Miller E.N, Khalil E.A, ElHassan A.M, et al. IFNG and IFNGR1 gene polymorphisms and susceptibility to post-kala-azar dermal leishmaniasis in Sudan. Genes Immun 2007; 8:75-78. DOI: https://doi.org/10.1038/sj.gene.6364353

Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009; 9:535–542. DOI: https://doi.org/10.1038/nri2587

Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol. 2006; 7:156–164. DOI: https://doi.org/10.1038/ni1297

Lee BL, Moon JE, Shu JH, Yuan L, Newman ZR, Schekman R, Barton GM. UNC93B1 mediates differential trafficking of endosomal TLRs. Elife. 2013; 2:19 DOI: https://doi.org/10.7554/eLife.00291

Oldenburg M, Kruger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, Koedel U, Akira S, Kawai T, Buer J, Wagner H, Bauer S, Hochrein H, Kirschning CJ. TLR13 Recognizes Bacterial 23S rRNA Devoid of Erythromycin Resistance- Forming Modification. Science (New York, N.Y.). 2012; 20:20. DOI: https://doi.org/10.1126/science.1220363

Pifer R, Yarovinsky F. Innate responses to Toxoplasma gondii in mice and humans. Trends Parasitol. 2011; 27:388–393.

Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol. 1998; 70:83–243. DOI: https://doi.org/10.1016/S0065-2776(08)60387-9

Hunter C.A, Subauste C.S, Van Cleave V.H, Remington JS. Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin-12, and tumor necrosis factor alpha. Infect Immun. 1994; 62:2818–2824. DOI: https://doi.org/10.1128/iai.62.7.2818-2824.1994

Dunay I.R, Sibley L.D. Monocytes mediate mucosal immunity to Toxoplasma gondii. Curr Opin Immunol. 2010; 22:461–466. DOI: https://doi.org/10.1016/j.coi.2010.04.008

Denkers E.Y, Butcher B.A, Del Rio L, Bennouna S. Neutrophils, dendritic cells and Toxoplasma. Int J Parasitol. 2004; 34:411–421. DOI: https://doi.org/10.1016/j.ijpara.2003.11.001

Mashayekhi M, Sandau M.M, Dunay IR, Frickel E.M, Khan A, Goldszmid R.S, Sher A, Ploegh H.L, Murphy T.L, Sibley L.D, Murphy K.M. CD8alpha(+) dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity. 2011.35:249–259. DOI: https://doi.org/10.1016/j.immuni.2011.08.008

Hou B, Benson A, Kuzmich L, DeFranco AL, Yarovinsky F. Critical coordination of innate immune defense against Toxoplasma gondii by dendritic cells responding via their Toll-like receptors. Proc Natl Acad Sci U S A. 2011; 108:278–283. DOI: https://doi.org/10.1073/pnas.1011549108

46. Kucera K, Koblansky A.A, Saunders L.P, Frederick K.B, De La Cruz E.M, Ghosh S, Modis Y. Structure-based analysis of Toxoplasma gondii profilin: a parasite-specific motif is required for recognition by Toll-like receptor 11. J Mol Biol. 2010; 403:616–629. DOI: https://doi.org/10.1016/j.jmb.2010.09.022

Ajzenberg D, Banuls AL, Tibayrenc M, Dardé ML. Microsatellite analysis of Toxoplasma gondii population shows a high polymorphism structured into two main clonal groups. Int J Parasitol 2002;32:7-38. DOI: https://doi.org/10.1016/S0020-7519(01)00301-0

Lehmann T, Blackston C.R, Parmley S.F, Remington J.S, Dubey J.P. Strain typing of Toxoplasma gondii: comparison of antigencoding and housekeeping genes. J Parasitol 2000;86:960-71. DOI: https://doi.org/10.1645/0022-3395(2000)086[0960:STOTGC]2.0.CO;2

Grigg M.E, Bonnefoy S, Hehl A.B, Suzuki Y, Boothroyd J.C. Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries. Science 2001;294:161-5. DOI: https://doi.org/10.1126/science.1061888

Plattner, F. and Soldati-Favre, D. Hijacking of host cellular functions by the Apicomplexa. Annu. Rev. Microbiol. 2008; 62, 471–487 DOI: https://doi.org/10.1146/annurev.micro.62.081307.162802

Blader, I.J. and Saeij, J.P. Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS. 2009; 117, 458–476 DOI: https://doi.org/10.1111/j.1600-0463.2009.02453.x

Peixoto, L. Integrative Genomic Approaches Highlight a Family of Parasite-Specific Kinases that Regulate Host Responses. Cell Host Microbe. 2010; 8, 208–218 DOI: https://doi.org/10.1016/j.chom.2010.07.004

Pifer, R. and Yarovinsky, F. Innate responses to Toxoplasma gondii in mice and humans. Trends Parasitol. 2011; 27, 388–393 DOI: https://doi.org/10.1016/j.pt.2011.03.009

Zhao, Y.O. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 2009; 5, e1000288 DOI: https://doi.org/10.1371/journal.ppat.1000288

Zhao, Y. Virulent Toxoplasma gondii evade immunity- related GTPase-mediated parasite vacuole disruption within primed macrophages. J. Immunol. 2009; 182, 3775–3781 DOI: https://doi.org/10.4049/jimmunol.0804190

Andrade, R.M. CD40 induces macrophage anti- Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J. Clin. Invest. 2006; 116, 2366–2377 DOI: https://doi.org/10.1172/JCI28796

Ling, Y.M. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J. Exp. Med. 2006; 203, 2063–2071 DOI: https://doi.org/10.1084/jem.20061318

Witola, W.H. NALP1 influences susceptibility to human congenital toxoplasmosis, pro-inflammatory cytokine response and fate of T. gondii-Infected monocytic cells. Infect. Immun. 2010. DOI: https://doi.org/10.1128/IAI.00898-10

Lees, M.P. P2X7 receptor-mediated killing of an intracellular parasite, Toxoplasma gondii, by human and murine macrophages. J. Immunol. 2010; 184, 7040–7046 DOI: https://doi.org/10.4049/jimmunol.1000012

Vossenka¨mper, A. Both IL-12 and IL-18 contribute to small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii, but IL-12 is dominant over IL-18 in parasite control. Eur. J. Immunol. 2004; 34, 3197–3207 DOI: https://doi.org/10.1002/eji.200424993

Downloads

Published

2016-09-02

How to Cite

Abbas Kadhim, R., Hussein Al-Marzoqi, A., & Mohammed Al-Taee, Z. (2016). Genetic susceptibility associated with toxoplasmosis; genetic polymorphism, molecular and immunological study. Al-Kufa University Journal for Biology, 8(2), 36–54. https://doi.org/10.36320/ajb/v8.i2.9275

Similar Articles

You may also start an advanced similarity search for this article.