Some Biochemical and Biomass Responses of Wheat [Triticum aestivum L.] to Suboptimal Water Supply and Different Potassium Rates

Authors

  • Shno Y. Hussein Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
  • Mohammed Q. Khursheed Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq

DOI:

https://doi.org/10.36320/ajb/v14.i3.11164

Keywords:

potassium, drought, wheat, lipid peroxidation, biomass

Abstract

Nowadays, the most limited natural resource is water. Therefore, researchers have been searching for ways to enhance drought resistance as well as plant growth under limited water supply. In this study, the potassium application effect under water shortage on some biomass and biochemical parameters on the wheat (Hawler-2) genotype, was examined in 2021–2022. Irrigation levels were kept at 100% and 30% of field capacity and different doses (0, 150, and 300 kg ha-¹) of potassium were applied to the soil, arranged as a factorial experiment in CRD design with 4 repetitions. The results demonstrated that drought reduced biomass features such as (length of root and shoot, root shoot dry weight), increased proline, glycine betaine, soluble sugars, MDA, and H202, while application of potassium enhanced accumulation of the above mentioned osmoprotectants and improved root and shoot length along with root shoot dry weights and root shoot ratio and led to a reduction of lipid peroxidation and H202 content. Hence, it can be said that K might perform an effective role in dropping the undesirable effects of drought in wheat plants.

Downloads

Download data is not yet available.

References

AHANGER, M. A. & AGARWAL, R. M. 2017. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma, 254, 1471-1486. DOI: https://doi.org/10.1007/s00709-016-1037-0

AHMAD, H. M., WANG, X., MAHMOOD UR, R., FIAZ, S., AZEEM, F. & SHAHEEN, T. 2021. Morphological and Physiological Response of Helianthus annuus L. to Drought Stress and Correlation of Wax Contents for Drought Tolerance Traits. Arabian Journal for Science and Engineering. DOI: https://doi.org/10.1007/s13369-021-06098-1

AKSU, G. & ALTAY, H. 2020. The Effects of Potassium Applications on Drought Stress in Sugar Beet. Sugar Tech, 22, 1092-1102. DOI: https://doi.org/10.1007/s12355-020-00851-w

AL-GHAMDI, A. A. 2009. Evaluation of oxidative stress tolerance in two wheat (Triticum aestivum) cultivars in response to drought. International Journal of Agriculture and Biology, 11, 7-12.

AL-QURAISHI, A. M. F. & NEGM, A. M. 2019. Environmental remote sensing and GIS in Iraq, Springer. DOI: https://doi.org/10.1007/978-3-030-21344-2

ANJUM, S., WANG, L., FAROOQ, M., HUSSAIN, M., XUE, L. & ZOU, C. 2011. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal ofAgronomy and crop science, 197, 177-185. DOI: https://doi.org/10.1111/j.1439-037X.2010.00459.x

ANSARI, W., ATRI, N., SINGH, B., KUMAR, P. & PANDEY, S. 2018. Morphophysiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica, 56, 1019-1030. DOI: https://doi.org/10.1007/s11099-018-0821-9

ANSARI, W. A., ATRI, N., PANDEY, M., SINGH, A. K., SINGH, B. & PANDEY, S. 2019. Influence of drought stress on morphological, physiological and biochemical attributes of plants: A review. Biosciences Biotechnology Research Asia, 16, 697-709. DOI: https://doi.org/10.13005/bbra/2785

ASLAM, M., IBNI ZAMIR, M. S., AFZAL, I. & YASEEN, M. 2013. Morphological and physiological response of maize hybrids to potassium application under drought stress. Journal of Agricultural Research (03681157), 51.

ASSMANN, S. M. & HAUBRICK, L. L. 1996. Transport proteins of the plant plasma membrane. Current opinion in cell biology, 8, 458-467. DOI: https://doi.org/10.1016/S0955-0674(96)80021-4

BAĞCI, S. A., EKIZ, H. & YILMAZ, A. 2003. Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry, 27, 253-260.

BAHRAMI-RAD, S. & HAJIBOLAND, R. 2017. Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: Comparison of root with foliar application. Annals of Agricultural Sciences, 62, 121-130. DOI: https://doi.org/10.1016/j.aoas.2017.08.001

BATES, L. S., WALDREN, R. P. & TEARE, I. 1973. Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207. DOI: https://doi.org/10.1007/BF00018060

BLUM, A., KLUEVA, N. & NGUYEN, H. 2001. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 117, 117-123. DOI: https://doi.org/10.1023/A:1004083305905

BUREAU, U. C. 2008. Total midyear population for the world: 1950-2050. US Census Bureau Washington, DC.

CAKMAK, I. & HORST, W. J. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia plantarum, 83, 463-468. DOI: https://doi.org/10.1034/j.1399-3054.1991.830320.x

CSONKA, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev, 53, 121-47. DOI: https://doi.org/10.1128/mr.53.1.121-147.1989

DALALY, B. & AL-HAKIM, S. 1987. Food Analysis. Printed in Mosel University. DEMIRAL, T. & TÜRKAN, I. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and experimental botany, 53, 247-257. DOI: https://doi.org/10.1016/j.envexpbot.2004.03.017

EBRAHIMI, S. T., YARNIA, M., BENAM, M. K. & TABRIZI, E. F. M. 2011. Effect of potassium fertilizer on corn yield (Jeta cv.) under drought stress condition. American-Eurasian Journal Agriculture and Environ Sci, 10, 257-263.

EGILLA, J. N., DAVIES, F. T. & DREW, M. C. 2001. Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun: Plant growth, leaf macro- and micronutrient content and root longevity. Plant and Soil, 229, 213-224. DOI: https://doi.org/10.1023/A:1004883032383

EL, Y. M., SAKAR, E. H., BOUSSAKOURAN, A. & RHARRABTI, Y. 2019. Physiological and biochemical responses of young olive trees (Olea europaea L.) to water stress during flowering. Archives of Biological Sciences, 71, 123- 132. DOI: https://doi.org/10.2298/ABS181001054E

FADHIL, A. M. Sand dunes monitoring using remote sensing and GIS techniques for some sites in Iraq. PIAGENG 2013: Intelligent information, control, and communication technology for agricultural engineering, 2013. SPIE, 28-36. DOI: https://doi.org/10.1117/12.2019735

FAROOQ, M., WAHID, A., KOBAYASHI, N., FUJITA, D. & BASRA, S. 2009. Plant drought stress: effects, mechanisms and management. Sustainable agriculture. Springer. DOI: https://doi.org/10.1007/978-90-481-2666-8_12

FATHI, A. & TARI, D. B. 2016. Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10, 1-6. DOI: https://doi.org/10.3126/ijls.v10i1.14509

GERAVANDI, M., FARSHADFAR, E. & KAHRIZI, D. 2011. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russian Journal of Plant Physiology, 58, 69-75. DOI: https://doi.org/10.1134/S1021443711010067

GRIEVE, C. & GRATTAN, S. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and soil, 70, 303-307. DOI: https://doi.org/10.1007/BF02374789

HASANUZZAMAN, M., NAHAR, K., ANEE, T., KHAN, M. & FUJITA, M. 2018. Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. South African Journal of Botany, 115, 50-57. DOI: https://doi.org/10.1016/j.sajb.2017.12.006

HEMATHILAKE, D. M. K. S. & GUNATHILAKE, D. M. C. C. 2022. Chapter 31 - Agricultural productivity and food supply to meet increased demands. In: BHAT, R. (ed.) Future Foods. Academic Press. DOI: https://doi.org/10.1016/B978-0-323-91001-9.00016-5

HUSSEIN, H.-A. A., ALSHAMMARI, S. O., KENAWY, S. K., ELKADY, F. M. & BADAWY, A. A. 2022. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress. Plants, 11, 1219. DOI: https://doi.org/10.3390/plants11091219

JALEEL, C. A., MANIVANNAN, P., WAHID, A., FAROOQ, M., AL-JUBURI, H. J., SOMASUNDARAM, R. & PANNEERSELVAM, R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol, 11, 100-105.

KUMAR, S., DWIVEDI, S., RAO, K., MISHRA, J., SINGH, A., BHAKTA, N., PRAKASH, V., SINGH, S. K., KUMAR, V. & BHATT, B. 2018. Optimizing Dosage and Mode of Potassium Application for Rice in Drought-Prone

Rainfed Ecology of Middle Indo-Gangetic Plains. Agricultural research, 7, 215-224.

MARSCHNER, H. 2011. Marschner's mineral nutrition of higher plants, Academic press.

MARTI, J. & SLAFER, G. A. 2014. Bread and durum wheat yields under a wide range of environmental conditions. Field Crops Research, 156, 258-271. DOI: https://doi.org/10.1016/j.fcr.2013.10.008

MOHD ZAIN, N. A. & ISMAIL, M. R. 2016. Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress. Agricultural Water Management, 164, 83-90. DOI: https://doi.org/10.1016/j.agwat.2015.09.022

MOHD ZAIN, N. A., ISMAIL, M. R., PUTEH, A., MAHMOOD, M. & ISLAM, M. R. 2014. Drought tolerance and ion accumulation of rice following application of additional potassium fertilizer. Communications in soil science and plant analysis, 45, 2502-2514. DOI: https://doi.org/10.1080/00103624.2014.932374

OERKE, E.-C. 2006. Crop losses to pests. The Journal of Agricultural Science, 144, 31-43. DOI: https://doi.org/10.1017/S0021859605005708

PARIDA, A. K., DAGAONKAR, V. S., PHALAK, M. S., UMALKAR, G. V. & AURANGABADKAR, L. P. 2007. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1, 37-48. DOI: https://doi.org/10.1007/s11816-006-0004-1

PETTIGREW, W. T. 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 133, 670-81. DOI: https://doi.org/10.1111/j.1399-3054.2008.01073.x

PRAJAPATI, K. & MODI, H. 2012. The importance of potassium in plant growth–a review. Indian Journal of Plant Sciences, 1, 177-186.

REYNOLDS, M. & TUBEROSA, R. 2008. Translational research impacting on crop productivity in drought-prone environments. Current opinion in plant biology, 11, 171-179. DOI: https://doi.org/10.1016/j.pbi.2008.02.005

ROBYT, J. & WHITE, B. 1987. Biochemical techniques: theory and practice. Monterey: Brooks. Cole Publishing Company.

RÖMHELD, V. & KIRKBY, E. A. 2010. Research on potassium in agriculture: needs and prospects. Plant and soil, 335, 155-180. DOI: https://doi.org/10.1007/s11104-010-0520-1

SALLAM, A., ALQUDAH, A. M., DAWOOD, M. F., BAENZIGER, P. S. & BÖRNER, A. 2019. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International journal of molecular sciences, 20, 3137. DOI: https://doi.org/10.3390/ijms20133137

SÁNCHEZ-RODRÍGUEZ, E., RUBIO-WILHELMI, M. M., CERVILLA, L. M., BLASCO, B., RIOS, J. J., ROSALES, M. A., ROMERO, L. & RUIZ, J. M. 2010. Genotypic differences in some physiological parameters symptomatic

for oxidative stress under moderate drought in tomato plants. Plant science, 178, 30-40. DOI: https://doi.org/10.1016/j.plantsci.2009.10.001

SATTAR, A., SHER, A., IJAZ, M., KASHIF, M., SULEMAN, M., ALI, M. U., ABBAS, A. & MAHBOOB, A. 2020. Exogenous application of potassium improves the drought tolerance in chickpea. Journal of Arable Crops and Marketing, 2, 31-34. DOI: https://doi.org/10.33687/jacm.002.01.3185

SELVA, C., RIBONI, M., BAUMANN, U., WÜRSCHUM, T., WHITFORD, R. & TUCKER, M. R. 2020. Hybrid breeding in wheat: how shaping floral biology can offer new perspectives. Functional Plant Biology, 47, 675-694. DOI: https://doi.org/10.1071/FP19372

SERGIEV, I., ALEXIEVA, V. & KARANOV, E. 1997. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci, 51, 121-124.

SERRAJ, R. & SINCLAIR, T. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, cell & environment, 25, 333-341. DOI: https://doi.org/10.1046/j.1365-3040.2002.00754.x

SHARP, R. E., WU, Y., VOETBERG, G. S., SAAB, I. N. & LENOBLE, M. E. 1994. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. Journal of Experimental Botany, 45, 1743-1751. DOI: https://doi.org/10.1093/jxb/45.Special_Issue.1743

SUBBARAO, G. V., NAM, N. H., CHAUHAN, Y. S. & JOHANSEN, C. 2000. Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. Journal of plant physiology, 157, 651-659. DOI: https://doi.org/10.1016/S0176-1617(00)80008-5

WANG, H., LIU, X., YANG, P., WU, R., WANG, S., HE, S. & ZHOU, Q. 2022. Potassium application promote cotton acclimation to soil waterlogging stress by regulating endogenous protective enzymes activities and hormones contents. Plant Physiology and Biochemistry, 185, 336-343. DOI: https://doi.org/10.1016/j.plaphy.2022.06.019

WANG, M., ZHENG, Q., SHEN, Q. & GUO, S. 2013. The critical role of potassium in plant stress response. International journal of molecular sciences, 14, 7370- 7390. DOI: https://doi.org/10.3390/ijms14047370

WASAYA, A., AFFAN, M., AHMAD YASIR, T., MUBEEN, K., ALI, M., NAWAZ, F., GALAL, A., IQBAL, M. A., ISLAM, M. S. & ELSHARNOUBY, M. 2021. Foliar Potassium Sulfate Application Improved Photosynthetic Characteristics, Water Relations and Seedling Growth of Drought-Stressed Maize. Atmosphere, 12, 663. DOI: https://doi.org/10.3390/atmos12060663

WEI, J., LI, C., LI, Y., JIANG, G., CHENG, G. & ZHENG, Y. 2013. Effects of external potassium (K) supply on drought tolerances of two contrasting winter wheat cultivars. Plos one, 8, e69737. DOI: https://doi.org/10.1371/journal.pone.0069737

XU, Q., FU, H., ZHU, B., HUSSAIN, H. A., ZHANG, K., TIAN, X., DUAN, M., XIE, X. & WANG, L. 2021. Potassium improves drought stress tolerance in plants by affecting root morphology, root exudates, and microbial diversity. Metabolites, 11, 131. DOI: https://doi.org/10.3390/metabo11030131

ZAHOOR, R., ZHAO, W., ABID, M., DONG, H. & ZHOU, Z. 2017. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. Journal of Plant Physiology, 215, 30-38. DOI: https://doi.org/10.1016/j.jplph.2017.05.001

ZHANG, L., GAO, M., LI, S., ALVA, A. K. & ASHRAF, M. 2014. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars. Turkish Journal of Botany, 38, 713-723. DOI: https://doi.org/10.3906/bot-1308-47

Downloads

Published

2022-12-29

How to Cite

Y. Hussein, S., & Q. Khursheed, M. (2022). Some Biochemical and Biomass Responses of Wheat [Triticum aestivum L.] to Suboptimal Water Supply and Different Potassium Rates. Al-Kufa University Journal for Biology, 14(3), 61–75. https://doi.org/10.36320/ajb/v14.i3.11164

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.