Characterization of the oxidative stress and inflammatory markers in metabolically healthy obese individuals

Authors

  • Hazhmat Ali College of Medicine - University of Duhok

DOI:

https://doi.org/10.36320/ajb/v15.i3.13174

Keywords:

Oxidative stress, IL-38, Lipid profile, Inflammation, Hypertension and Cardiovascular diseases

Abstract

Introduction and Objectives:

Obesity has emerged as a global health problem. Although various studies have linked obesity to a wide spectrum of diseases mainly diabetes and cardiovascular disease, little is known concerning involvement of oxidative stress and inflammation in non-diseased conditions. The current study aims to explore the feasibility of inflammatory markers and oxidative stress markers in sera of metabolically healthy obese individuals.    

Methods:

The current study involved one hundred healthy participants. Following obtaining relevant clinical data, sera were taken for further laboratory investigations including lipid profile, fasting serum glucose and HbA1c. Samples were also investigated for determining inflammatory and oxidative stress markers including highly sensitive C - reactive protein (hs-CRP), malondialdehyde (MDA) and gamma glutamyl transferase (GGT).

Results:

Total cholesterol, triglyceride and fasting blood glucose levels were statistically significantly higher in study group compared to controls (p < 0.0001, 0.009 and < 0.0001 respectively). The hs-CRP, MDA and GGT were also statistically significantly higher in healthy obese (p < 0.001, 0.005 and 0.001 respectively). Moreover, MDA was positively correlated with GGT and was statistically significant (p < 0.001).  

Conclusion:

The obtained findings suggest that, there may be an existence of a low grade chronic inflammation consistent with oxidative stress which might be considered as a risk factor for developing metabolic diseases and cardiovascular disturbances mainly diabetes mellitus, hypertension and stroke.

Downloads

Download data is not yet available.

References

Mayoral LP, Andrade GM, Mayoral EP, Huerta TH, Canseco SP, Rodal Canales FJ, et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res. 2020 Jan; 151(1):11-21. https://doi.org/10.4103/ijmr.IJMR_1768_17 DOI: https://doi.org/10.4103/ijmr.IJMR_1768_17

GBD 2015 Obesity Collaborators; Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, et al. . Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017 Jul 6; 377(1):13-27. https://doi.org/10.1056/NEJMoa1614362 DOI: https://doi.org/10.1056/NEJMoa1614362

Gregg EW, Shaw JE. Global Health Effects of Overweight and Obesity. N Engl J Med. 2017 Jul 6; 377(1):80-81. https://doi.org/10.1056/NEJMe1706095 DOI: https://doi.org/10.1056/NEJMe1706095

Reilly JJ. Health Effects of Overweight and Obesity in 195 Countries. N Engl J Med. 2017 Oct 12; 377(15):1496. https://doi.org/10.1056/NEJMc1710026 DOI: https://doi.org/10.1056/NEJMc1710026

Caballero B. Humans against Obesity: Who Will Win? Adv Nutr. 2019 Jan 1;10(suppl_1):S4-S9. https://doi.org/10.1093/advances/nmy055 DOI: https://doi.org/10.1093/advances/nmy055

Dugan B, Conway J, Duggal NA. Inflammaging as a target for healthy ageing. Age Ageing. 2023 Feb 1; 52(2):afac328. https://doi.org/10.1093/ageing/afac328 DOI: https://doi.org/10.1093/ageing/afac328

Di Giosia P, Stamerra CA, Giorgini P, Jamialahamdi T, Butler AE, Sahebkar A. The role of nutrition in inflammaging. Ageing Res Rev. 2022 May; 77:101596. https://doi.org/10.1016/j.arr.2022.101596 DOI: https://doi.org/10.1016/j.arr.2022.101596

Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol. 2017 Sep 29;16(1):120. https://doi.org/10.1186/s12933-017-0604-9 DOI: https://doi.org/10.1186/s12933-017-0604-9

Hu C, Yan Y, Ji F, Zhou H. Maternal Obesity Increases Oxidative Stress in Placenta and It Is Associated With Intestinal Microbiota. Front Cell Infect Microbiol. 2021 Aug 23; 11:671347. https://doi.org/10.3389/fcimb.2021.671347 DOI: https://doi.org/10.3389/fcimb.2021.671347

Rupérez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci. 2014 Feb 20;15(2):3118-44. https://doi.org/10.3390/ijms15023118 DOI: https://doi.org/10.3390/ijms15023118

Naoto Fukuyama, Kazuhiro Homma, Noriaki Wakana, Kaori Kudo, et al. Validation of Friedewald Equation for Evaluation of Plasma LDL-Cholesterol. J Clin Biochem Nutr. 2008; 43: 1–5. DOI: https://doi.org/10.3164/jcbn.2008036

Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014 Jan 16; 156(1-2):20-44. https://doi.org/10.1016/j.cell.2013.12.012 DOI: https://doi.org/10.1016/j.cell.2013.12.012

Gissler MC, Anto-Michel N, Pennig J, Scherrer P, Li X, Marchini T, et al. Genetic Deficiency of TRAF5 Promotes Adipose Tissue Inflammation and Aggravates Diet-Induced Obesity in Mice. Arterioscler Thromb Vasc Biol. 2021 Oct; 41 (10):2563-2574. https://doi.org/10.1161/ATVBAHA.121.316677 DOI: https://doi.org/10.1161/ATVBAHA.121.316677

Riyami AA, Afifi MM. Prevalence and correlates of obesity and central obesity among Omani adults. Saudi Med J. 2003 Jun; 24(6):641-6.

Karr S. Epidemiology and management of hyperlipidemia. Am J Manag Care. 2017 Jun; 23(9 Suppl):S139-S148.

Vogt A. The genetics of familial hypercholesterolemia and emerging therapies. Appl Clin Genet. 2015; 8:27-36. https://doi.org/10.2147/TACG.S44315 DOI: https://doi.org/10.2147/TACG.S44315

Khera AV, Won HH, Peloso GM, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016; 67(22):2578-2589. https://doi.org/10.1016/j.jacc.2016.03.520 DOI: https://doi.org/10.1016/j.jacc.2016.03.520

Neeland IJ, Poirier P, Després JP. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation. 2018 Mar 27; 137(13):1391-1406. https://doi.org/10.1161/CIRCULATIONAHA.117.029617 DOI: https://doi.org/10.1161/CIRCULATIONAHA.117.029617

Rhee EJ, Kwon H, Park SE, Han KD, Park YG, Kim YH, Lee WY. Associations among Obesity Degree, Glycemic Status, and Risk of Heart Failure in 9,720,220 Korean Adults. Diabetes Metab J. 2020 Aug; 44(4):592-601. https://doi.org/10.4093/dmj.2019.0104 DOI: https://doi.org/10.4093/dmj.2019.0104

Norris T, Blodgett JM, Rogers NT, Hamer M, Pinto Pereira SM. Obesity in early adulthood and physical functioning in mid-life: Investigating the mediating role of C - reactive protein. Brain Behav Immun. 2022 May; 102:325-332. https://doi.org/10.1016/j.bbi.2022.03.008 DOI: https://doi.org/10.1016/j.bbi.2022.03.008

Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev. 2013 Mar; 14(3):232-44. https://doi.org/10.1111/obr.12003 DOI: https://doi.org/10.1111/obr.12003

Chae WR, Nübel J, Baumert J, Gold SM, Otte C. Association of depression and obesity with C-reactive protein in Germany: A large nationally representative study. Brain Behav Immun. 2022 Jul; 103:223-231. https://doi.org/10.1016/j.bbi.2022.04.024 DOI: https://doi.org/10.1016/j.bbi.2022.04.024

Han H, Cho YH, Lee SY, Park EJ, Kim YJ, Lee JG, et al. Elevated C-reactive protein level, obesity, and quality of life. J Pak Med Assoc. 2019 Dec; 69(12):1771-1776. https://doi.org/10.5455/JPMA.298182 DOI: https://doi.org/10.5455/JPMA.298182

Chandrasekhar J, Zaman S. Associations Between C-Reactive Protein, Obesity, Sex, and PCI Outcomes: The Fat of the Matter. JACC Cardiovasc Interv. 2020 Dec 28; 13(24):2893-2895. https://doi.org/10.1016/j.jcin.2020.10.047 DOI: https://doi.org/10.1016/j.jcin.2020.10.047

McGill MR, Gronowski AM. Increased C - reactive protein in Healthy Controls. Clin Chem. 2018 Jan;64(1):242-243. https://doi.org/10.1373/clinchem.2017.274746 DOI: https://doi.org/10.1373/clinchem.2017.274746

Jakubiak GK, Osadnik K, Lejawa M, Kasperczyk S, Osadnik T, Pawlas N. Oxidative Stress in Association with Metabolic Health and Obesity in Young Adults. Oxid Med Cell Longev. 2021 Jun 26; 2021:9987352. https://doi.org/10.1155/2021/9987352 DOI: https://doi.org/10.1155/2021/9987352

Huang Y, Chen H, Liu Q, Hu J, Hu D, Huang Z, et al. Obesity difference on association blood malondialdehyde level and diastolic hypertension in the elderly population: a cross-sectional analysis. Eur J Med Res. 2023 Jan 24; 28(1):44. https://doi.org/10.1186/s40001-022-00983-7 DOI: https://doi.org/10.1186/s40001-022-00983-7

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004 Dec; 114(12):1752-61. https://doi.org/10.1172/JCI21625 DOI: https://doi.org/10.1172/JCI21625

de Oliveira Ulbrecht MO, Gonçalves DA, Zanoni LZG, do Nascimento VA. Association Between Selenium and Malondialdehyde as an Efficient Biomarker of Oxidative Stress in Infantile Cardiac Surgery. Biol Trace Elem Res. 2019 Jan; 187(1):74-79. https://doi.org/10.1007/s12011-018-1378-y DOI: https://doi.org/10.1007/s12011-018-1378-y

Shireen A. Ibrahim, Shelan H. Rasool, Hazhmat A. Ali. Serum gamma glutamyl transferase levels in women with polycystic ovary syndrome; relation to oxidative stress. Duhok Medical Journal. 2016; (10): 1.

Pararasa C, Bailey CJ, Griffiths HR. Ageing, adipose tissue, fatty acids and inflammation. Biogerontology. 2015 Apr; 16(2):235-48. https://doi.org/10.1007/s10522-014-9536-x DOI: https://doi.org/10.1007/s10522-014-9536-x

Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021 Mar 1; 320(3):C375-C391. https://doi.org/10.1152/ajpcell.00379.2020 DOI: https://doi.org/10.1152/ajpcell.00379.2020

Scalia R. The microcirculation in adipose tissue inflammation. Rev Endocr Metab Disord. 2013 Mar;14(1):69-76. https://doi.org/10.1007/s11154-013-9236-x DOI: https://doi.org/10.1007/s11154-013-9236-x

Harman-Boehm I, Blüher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007 Jun; 92(6):2240-7. https://doi.org/10.1210/jc.2006-1811 DOI: https://doi.org/10.1210/jc.2006-1811

Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016 Mar 1; 148:183-93. https://doi.org/10.1016/j.lfs.2016.02.002 DOI: https://doi.org/10.1016/j.lfs.2016.02.002

Raut SK, Khullar M. Oxidative stress in metabolic diseases: current scenario and therapeutic relevance. Mol Cell Biochem. 2023 Jan; 478(1):185-196. https://doi.org/10.1007/s11010-022-04496-z DOI: https://doi.org/10.1007/s11010-022-04496-z

Downloads

Published

2023-12-31

How to Cite

Ali, H. (2023). Characterization of the oxidative stress and inflammatory markers in metabolically healthy obese individuals. Al-Kufa University Journal for Biology, 15(3), 28–35. https://doi.org/10.36320/ajb/v15.i3.13174

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.