Extended Spectrum β-lactamases (ESBL) producing Escherichia coli (E.coli)

Authors

  • Venus Hassan Al-Saffar AL-Qasim Green University/ College of Biotechnology/ Babylon Governorate/ Iraq

DOI:

https://doi.org/10.36320/ajb/v11.i1.8039

Keywords:

E.coli, VITEK-2 system , ESBL

Abstract

total of 04 Escherichia coli (E.coli) isolates were recovered from women urinary tract infections (UTIs) in Al-Hilla teaching hospital, and private clinics. Isolates were identified to species level with a VITEK-2 system. Among the 40 women of UTI, 27(67.5%) had been preceded by a prior UTI and 13(32.5%) had not. The susceptibility to 4 antibiotics were tested using disc diffusion test, resulting in 9(33.3%), 7(26%), 3(11.1%), 1(4%) were resistant to ampicillin, trimethoprim-sulfamethoxazole, ciprofloxacin, and nitrofurantion, respectively with prior UTI. For detection extended spectrum β-lactamase (ESBL) producing E.coli, all 40 isolates were tested by using double-disk test method, and then confirmed by using combination disk test. The results showed that 10 (25%) were β-lactamase producing isolates.

Downloads

Download data is not yet available.

References

Zhanel, G. G.; Karlowsky, J. A. ; Harding, G. K. M.; Carrie, A.; Mazzulli, T. and Low D. E. The Canadian Urinary Isolate Study Group, and D. J. Hoban. (2000). A Canadian national surveillance study of urinary tract isolates from outpatients: comparison of the activities of trimethoprim-sulfamethoxazole, ampicillin, mecillinam, nitrofurantoin, and ciprofloxacin. Antimicrob. Age. Chem. 44:1089±92.

Gupta, K. A.; Scholes, D. and Stamm W. E. (1999). Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA. 281:736±738.

Emody, L.; Kerényi, M. and Nagy G. (2003). Virulence factors of uropathogenic Escherichia coli International. J. Antim. Agent. 22: S29-S33.

Warren, J. W.; Abrutyn, E. ; Hebel, J. R. ; Johnson, J. R. ; Schaeffer, A. J. and Stamm W. E. (1999). Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Clin. Infect. Dis. 29:745±758.

Pitout, J.D.; Laupland K.B. (2008) Extended-spectrum βeta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159-166.

Paterson, D.L. and Bonomo, R.A. (2005). Extended-spectrum βeta-lactamases: a clinical update. Clin. Microbiol. Rev. 18: 657-686.

Canton, R. and Coque T.M. (2006). The CTX-M βeta-lactamase pandemic. Curr. Opin.

Microbiol. 9: 466-475.

Bradford P.A. (2001). Extended-spectrum βeta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14: 933-951.

Maynard, C.; Fairbrother, J. M.; Bekal, S.; Sanschagrin, F.; Levesque, R. C.; Brousseau, V; Masson, L.; Larivière, S. and J. Harel. (2003). Antimicrobial resistance genes in enterotoxigenic E. coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 47:3214-3221.

Carattoli, A. (2001).Importance of integrons in the diffusion of resistance. Vet. Res. 32:243-259.

Clinical and Laboratory Standards Institute (CLSI). (2012). Performance standards for Antimicrobial susceptibility testing. Approveds tandard M100-S20. 32 (3). National Committee for Clinical Laboratory Standards, Wayne, PA.

Jarlier, V.; Nicolas, M.H.; Fournier, G. and Philippon A. (1988). Extended broad-spectrum βeta-lactamases conferring transferable resistance to newer βeta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev. Infect. Dis.10: 867-878.

Samuelsson, P.; Hang, L.; Wullt, B.; Irjala, H. and Svanborg C. (2004). Toll-Like Receptor 4 Expression and Cytokine Responses in the Human Urinary Tract Mucosa. Infect. Immun. 72 (6) : 3179–3186.

Ang, J.Y.; Ezike, E. and Asmar B. (2004). Antibacterial resistance. Indian. J. pediatr, 71 (3): 229-239.

Hassan, R.; Barwa, R. and Shehata H. R. (2010). Antimicrobial Resistance Genes and Some Virulence Factors in E.coli and S.pyogenes Isolated from Mansoura University Hospitals. Egypt. J. Med. Microbiol. 19 (1).

Drew, RH. (2007). Emerging options for treatment of invasive, multidrug-resistant Staphylococcus aureus infections. Pharmacotherapy, 27: 227-49.

Wright, S. W.; Wrenn, K. D.; and Haynes M. L. (1999). Trimethoprim-Sulfamethoxazole Resistance Among Urinary Coliform Isolates. J. Gen. Intern. Med. 14 (10): 606–609.

Mitscher L.A. (2004). Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. Chem. Rev. 105 (2): 559-592.

Arslan, H.; Azap, O. K.; Ergonul, O. and Timurkaynak F. (2005). Risk factors for ciprofloxacin resistance among E. coli strains isolated from community-acquired urinary tract infections in Turkey. J. Antimicrob. Chemo. 56: 914–918.

Conklin J.D. (1978). The pharmacokinetics of nitrofurantoin and its related bioavailability. Antibiot. Chemother. 25:233-52.

Asnis R.E. (1957). The reduction of Furacin by cell-free extracts of Furacin-resistant and parent-susceptible strains of E. coli. Arch. Biochem. Biophys. 66:208-16.

Peterson F.J.; Mason R.P.; Hovsepian J. and Holtzman J. L. (1979). Oxygen sensitive and insensitive nitroreduction by E. coli and rat hepatic microsomes. J. Biol. Chem. 254: 4009-14.

Karlowsky, J.A.; Thornsberry, C.; Jones, M.E. and Sahm D.F. (2003). Susceptibility of Antimicrobial-Resistant Urinary E.coli Isolates to Fluoroquinolones and Nitrofurantoin. Clin. Infect. Dis. 36 (2):183-87.

Bradford PA. (2001). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14 : 933-51.

Emery, C.L. and Weymouth L.A. (1997). Detection and clinical signifi cance of extended spectrum β-lactamases in a tertiary care medical center. J. Clin. Microbiol. 35: 2061-7.

Canto´n, R.; Novais, A.; Valverde, A.; Machado, E.; Peixe, L.; Baquero, F. and Coque T.M. (2008). Prevalence and spread of extended spectrum β-lactamase producing Enterobacteriaceae. Europe. Clin. Microbiol. Infect. 14:144–53.

Hussain, M.; Hasan, F.; Shah, A.A.; Hameed, A.; Jung, M.; Rayamajhi, N.; et al. (2011). Prevalence of class A and AmpC β-lactamases in clinical E.coli isolates from Pakistan Institute of Medical Science, Islamabad, Pakistan. Jpn. J. Infect. Dis. 64: 249–252.

Pradel, N.; Bertin, Y.; Martin, C. and Livrelli V. (2008). Molecular analysis of shiga toxin-producing E.coli strains isolated from hemolytic-uremic syndrome patients and dairy samples in France. Appl. Environ. Microbiol. 74: 2118–2128. Epub. 1.

Lautenbach, E.; Patel, J. B.; Bilker, W. B.; Edelstein, P. H. and Fishman N. O. (2001). Extended-Spectrum β-Lactamase Producing E.coli and K.pneumoniae: Risk Factors for Infection and Impact of Resistance on Outcomes. Clin. Infect. Dis. 32 (8): 1162-1171.

Villar, H. E.; Aubert, V. ; Baserni, M. N. and Jugo M. B. (2013). Maternal carriage of extended spectrum β-lactamase producing E.coli isolates in Argentina. J. Chem.

Downloads

Published

2019-02-27

How to Cite

Hassan Al-Saffar, V. (2019). Extended Spectrum β-lactamases (ESBL) producing Escherichia coli (E.coli). Al-Kufa University Journal for Biology, 11(1), 18–23. https://doi.org/10.36320/ajb/v11.i1.8039

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.