Estimation of Cytokines (IL-1&IL-22) in Wounds Infected with Pseudomonas aeruginosa in Albino Rat

Authors

  • Hawra'a Ala'a Hassen Department of Microbiology , Faculty of Veterinary medicine, University of Kufa
  • Kifah Fadhil Hassoon Department of Microbiology ,Faculty of Veterinary medicine, University of Kufa

DOI:

https://doi.org/10.36320/ajb/v14.i1.11749

Keywords:

IL-1, IL-22, Wound infection, Pseudomonas aeruginosa

Abstract

Wound infection is described as the occurrence of microorganisms in sufficient numbers or with sufficient virulence in a wound environment to stimulate an immune system response locally, systemically, or both. The present study focused on assessing the immune response by measuring cytokine levels ( IL-1, IL-22 ) in the serum of rats that induced wound infected with Pseudomonas aeruginosa. Thirty-six female Albino rats were used, divided into 3 groups GI (infected group), GII (wound without infection group), and GIII (healthy control group). An excision wound was made on the rat’s back and then contaminated the wound region with a bacterial solution that contain 2.5 ×106 CFU of P. aeruginosa. Following that, blood samples were taken at predetermined time periods (24 hours, 48 hours, and 72 hours) following infection to evaluate immunological response during wound infection. We found that the cytokines (IL-1) were detectable at all times ( 24, 48, 72 ) hours and observed in all studied groups while a significantly elevated level of IL-22 ( 0.77 ± 0.08 ) pg/ml was recorded in 24 hours in the infection group and then decreased at 72 hours.

Downloads

Download data is not yet available.

References

Khalili, S., Khorasani, S. N., Saadatkish, N., & Khoshakhlagh, K. (2016). Characterization of gelatin/cellulose acetate nanofibrous scaffolds: Prediction and optimization by response surface methodology and artificial neural networks. Polymer Science Series A, 58(3), 399-408.‏ https://doi.org/10.1134/S0965545X16030093 DOI: https://doi.org/10.1134/S0965545X16030093

Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. New England journal of medicine, 341(10), 738-746.‏ https://www.nejm.org/doi/full/10.1056/NEJM199909023411006 DOI: https://doi.org/10.1056/NEJM199909023411006

Böttcher-Haberzeth, S., Biedermann, T., & Reichmann, E. (2010). Tissue engineering of skin. Burns, 36(4), 450-460.‏ https://www.sciencedirect.com/science/article/pii/S0305417909004951 DOI: https://doi.org/10.1016/j.burns.2009.08.016

Maharjan, N., & Mahawal, B. S. (2020). Bacteriological profile of wound infection and antibiotic susceptibility pattern of various isolates in a tertiary care center. Journal of Lumbini Medical College, 8(2), 218-224.‏ https://doi.org/10.22502/jlmc.v8i2.367

Wu, M., & Li, X. (2015). Klebsiella pneumoniae and Pseudomonas aeruginosa. In Molecular medical microbiology (pp. 1547-1564). Academic Press.‏ https://doi.org/10.1016/B978-0-12-397169-2.00087-1 DOI: https://doi.org/10.1016/B978-0-12-397169-2.00087-1

Al-Azzawi, M. K., Makharmash, J. H., & Al-Malkey, N. K. (2020). The effect of Lactobacillus species on the Pseudomonas aeruginosa. Drug Invention Today, 14(2).‏

Migiyama, Y., Yanagihara, K., Kaku, N., Harada, Y., Yamada, K., Nagaoka, K., ... & Kohno, S. (2016). Pseudomonas aeruginosa bacteremia among immunocompetent and immunocompromised patients: relation to initial antibiotic therapy and survival. Japanese journal of infectious diseases, 69(2), 91-96.‏ https://doi.org/10.7883/yoken.JJID.2014.573 DOI: https://doi.org/10.7883/yoken.JJID.2014.573

Strbo, N., Yin, N., & Stojadinovic, O. (2014). Innate and adaptive immune responses in wound epithelialization. Advances in wound care, 3(7), 492-501.‏ https://doi.org/10.1089/wound.2012.0435 DOI: https://doi.org/10.1089/wound.2012.0435

Fahey, E., & Doyle, S. L. (2019). IL-1 family cytokine regulation of vascular permeability and angiogenesis. Frontiers in Immunology, 10, 1426.‏ https://doi.org/10.3389/fimmu.2019.01426 DOI: https://doi.org/10.3389/fimmu.2019.01426

Al-Jebouri, M. M., & Al-Mahmood, B. Y. R. (2019). Estimation of Cytokines Involved in Acute-Phase Wound Infection with Reference to Residence Time of Patients in Hospitals. Modern Research in Inflammation, 8(01), 1. https://doi.org/10.4236/mri.2019.81001 DOI: https://doi.org/10.4236/mri.2019.81001

‏ Avitabile, S., Odorisio, T., Madonna, S., Eyerich, S., Guerra, L., Eyerich, K., ... & Cianfarani, F. (2015). Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions. Journal of Investigative Dermatology, 135(11), 2862-2870.‏ https://doi.org/10.1038/jid.2015.278

Maura, D., Bandyopadhaya, A., & Rahme, L. G. (2018). Animal models for Pseudomonas aeruginosa quorum sensing studies. In Quorum Sensing (pp. 227-241). Humana Press, New York, NY. ‏ https://doi.org/10.1007/978-1-4939-7309-5_18 DOI: https://doi.org/10.1007/978-1-4939-7309-5_18

de Moura Estevão, L. R., Cassini-Vieira, P., Leite, A. G. B., de Carvalho Bulhões, A. A. V., da Silva Barcelos, L., & Evêncio-Neto, J. (2019). Morphological evaluation of wound healing events in the excisional wound healing model in rats. Bio-protocol, 9(13). http://www.bio-protocol.org/e3285 DOI: https://doi.org/10.21769/BioProtoc.3285

Schaudinn, C., Dittmann, C., Jurisch, J., Laue, M., Günday-Türeli, N., Blume-Peytavi, U., ... & Rancan, F. (2017). Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin. PLoS One, 12(11), e0186946.‏ https://doi.org/10.1371/journal.pone.0186946 DOI: https://doi.org/10.1371/journal.pone.0186946

Utariani, A., Rahardjo, E., & Perdanakusuma, D. S. (2020). Effects of albumin infusion on serum levels of albumin, proinflammatory cytokines (TNF-α, IL-1, and IL-6), CRP, and MMP-8; tissue expression of EGRF, ERK1, ERK2, TGF-β, collagen, and MMP-8; and wound healing in Sprague Dawley rats. International journal of inflammation, 2020.‏ https://doi.org/10.1155/2020/3254017 DOI: https://doi.org/10.1155/2020/3254017

Hughes, O., MacQuhae, F., Rakosi, A., Herskovitz, I., & Kirsner, R. S. (2017). Stress and wound healing. In Stress and Skin Disorders (pp. 185-207). Springer, Cham.‏ https://doi.org/10.1007/978-3-319-46352-0_19 DOI: https://doi.org/10.1007/978-3-319-46352-0_19

Barthelemy, A., Sencio, V., Soulard, D., Deruyter, L., Faveeuw, C., Le Goffic, R., & Trottein, F. (2018). Interleukin-22 immunotherapy during severe influenza enhances lung tissue integrity and reduces secondary bacterial systemic invasion. Infection and immunity, 86(7), e00706-17. ‏ https://doi.org/10.1128/IAI.00706-17 DOI: https://doi.org/10.1128/IAI.00706-17

Guillon, A., Brea, D., Morello, E., Tang, A., Jouan, Y., Ramphal, R., ... & Si-Tahar, M. (2017). Pseudomonas aeruginosa proteolytically alters the interleukin 22-dependent lung mucosal defense. Virulence, 8(6), 810-820.‏ https://doi.org/10.1080/21505594.2016.1253658 DOI: https://doi.org/10.1080/21505594.2016.1253658

Avitabile, S., Odorisio, T., Madonna, S., Eyerich, S., Guerra, L., Eyerich, K., ... & Cianfarani, F. (2015). Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions. Journal of Investigative Dermatology, 135(11), 2862-2870.‏ https://doi.org/10.1038/jid.2015.278 DOI: https://doi.org/10.1038/jid.2015.278

Downloads

Published

2022-03-11

How to Cite

Ala’a Hassen, H., & Fadhil Hassoon, K. (2022). Estimation of Cytokines (IL-1&IL-22) in Wounds Infected with Pseudomonas aeruginosa in Albino Rat. Al-Kufa University Journal for Biology, 14(1), 65–69. https://doi.org/10.36320/ajb/v14.i1.11749

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.