Biosynthesis of Silver nanoparticles using Trichosporon asahii and study their antibacterial and synergism effects

Authors

  • Alaa M. Madhloom Biology Teacher, Arid Taws Evening School, Kufa Directorate of Education, Iraqi
  • Mohammed M. Alrufae Department of Biology, Faculty of Scinece, University of Kufa, Iraq

DOI:

https://doi.org/10.36320/ajb/v14.i1.11753

Keywords:

silver nanoparticles, biosynthesis, antibacterial

Abstract

          Nanoparticles (NPs) often have strong antibacterial properties to treat a variety of infections, but their high biotoxicity prevents them from being used directly. The biosynthesis of NPs, as well as their capping/conjugation with natural biopolymers, can improve NPs stability and reduce toxicity. Without using any additional chemical processes, Trichosporon asahii was used to directly synthesize silver nanoparticles (AgNPs) by extracellular mechanism. Physical and chemical evaluations such as (solution color change, and UV spectrophotometer), validated the formation of nanoparticles. The AgNPs had similar powerful bactericidal effects against Gram positive (Staphylococcus aureus, Enterococcus Faecalis, Bacillus cereus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia). The goal of this study is to evaluate the efficiency of silver nanoparticles antibacterial activity which  produced by Trichosporon asahii and use as alternatives to antibiotics

Downloads

Download data is not yet available.

References

Abdelghany, T. M., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M. M., Magdah, A. G., Helmy, E. A., and Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience, 8(1), 5-16. DOI: https://doi.org/10.1007/s12668-017-0413-3

Ali, Y.K.A. and Mohammed, M.A.(2021). Phenotypic and genotypic identification of yeasts species isolated from diabetic foot patient in Al-najaf province-Iraqi. Archives of Razi Institute.

Almaaytah, A., Farajallah, A., Abualhaijaa, A., and Al-Balas, Q. (2018). A3, a scorpion venom derived peptide analogue with potent antimicrobial and potential antibiofilm activity against clinical isolates of multi-drug resistant gram positive bacteria. Molecules, 23(7), 1603 DOI: https://doi.org/10.3390/molecules23071603

Azmath, P., Baker, S., Rakshith, D., and Satish, S. (2016). Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharmaceutical Journal, 24(2), 140-146. DOI: https://doi.org/10.1016/j.jsps.2015.01.008

Ballottin, D., Fulaz, S., Souza, M. L., Corio, P., Rodrigues, A. G., Souza, A. O., and Tasic, L. (2016). Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale research letters, 11(1), 1-9 DOI: https://doi.org/10.1186/s11671-016-1538-y

Barras, F., Aussel, L., and Ezraty, B. (2018). Silver and Antibiotic, New Facts to an Old Story. Antibiotics (Basel, Switzerland), 7(3), 79. DOI: https://doi.org/10.3390/antibiotics7030079

Bartlomiejczyk, T., Lankoff, A., Kruszewski, M., and Szumiel, I. (2013). Silver nanoparticles–allies or adversaries?. Annals of Agricultural and Environmental Medicine, 20(1)

Berdy, J. (2005). Bioactive microbial metabolites. The Journal of antibiotics, 58(1), 1-26. DOI: https://doi.org/10.1038/ja.2005.1

Deng, H., McShan, D., Zhang, Y., Sinha, S. S., Arslan, Z., Ray, P. C., and Yu, H. (2016). Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environmental science and technology, 50(16), 8840–8848.

https://doi.org/10.1021/acs.est.6b00998 DOI: https://doi.org/10.1021/acs.est.6b00998

Ebrahimi, A., Jafferi, H., Habibian, S., and Lotfalian, S. (2018). Evaluation of anti biofilm and antibiotic potentiation activities of silver nanoparticles against some nosocomial pathogens. Iranian Journal of Pharmaceutical Sciences, 14(2), 7-14.

Gholami-Shabani, M., Akbarzadeh, A., Norouzian, D., Amini, A., Gholami-Shabani, Z., Imani, A., ... and Razzaghi-Abyaneh, M. (2014).

Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Applied biochemistry and biotechnology, 172(8), 4084-4098. DOI: https://doi.org/10.1007/s12010-014-0809-2

González-Jiménez, A., and Garcìa, A. (2020). Silver nanoparticles as antibacterial agents in bone tissue infections. y IP address 66.249. 76.158 on 2021/02/22, 5(1).

Guilger, M., Pasquoto-Stigliani, T., Bilesky-Jose, N., Grillo, R., Abhilash, P. C., Fraceto, L. F., and De Lima, R. (2017). Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Scientific reports, 7(1), 1-13. DOI: https://doi.org/10.1038/srep44421

Hiramatsu, K., Cui, L., Kuroda, M., and Ito, T. (2001). The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends in microbiology, 9(10), 486-493 DOI: https://doi.org/10.1016/S0966-842X(01)02175-8

Huq, M., and Akter, S. (2021). Biosynthesis, characterization and antibacterial application of novel silver nanoparticles against drug resistant pathogenic klebsiella pneumoniae and salmonella enteritidis. Molecules, 26(19), 5996. DOI: https://doi.org/10.3390/molecules26195996

Jalal, M., Ansari, M. A., Alzohairy, M. A., Ali, S. G., Khan, H. M., Almatroudi, A., and Raees, K. (2018). Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials, 8(8), 586 DOI: https://doi.org/10.3390/nano8080586

Khan, N. T., Khan, M. J., Jameel, J., Jameel, N., and Rheman, S. U. A. (2017). An overview: biological organisms that serves as nanofactories for metallic nanoparticles synthesis and fungi being the most appropriate. Bioceram Dev. Appl, 7, 101. DOI: https://doi.org/10.4172/2090-5025.1000101

Kumar, P., Pahal, V., Gupta, A., Vadhan, R., Chandra, H., and Dubey, R. C. (2020). Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays. Scientific reports, 10(1), 1-10. DOI: https://doi.org/10.1038/s41598-020-77460-w

Li, L., Li, L., Zhou, X., Yu, Y., Li, Z., Zuo, D., and Wu, Y. (2019). Silver nanoparticles induce protective autophagy via Ca2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology, 13(3), 369-391. DOI: https://doi.org/10.1080/17435390.2018.1550226

Liao, C., Li, Y., and Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International journal of molecular sciences, 20(2), 449. DOI: https://doi.org/10.3390/ijms20020449

Lotfy, W. A., Alkersh, B. M., Sabry, S. A., and Ghozlan, H. A. (2021). Biosynthesis of Silver Nanoparticles by Aspergillus terreus: Characterization, Optimization, and Biological Activities. Frontiers in bioengineering and biotechnology, 9. DOI: https://doi.org/10.3389/fbioe.2021.633468

Mekkawy, A. I., El-Mokhtar, M. A., Nafady, N. A., Yousef, N., Hamad, M. A., El-Shanawany, S. M., ... and Elsabahy, M. (2017). In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. International journal of nanomedicine, 12, 759. DOI: https://doi.org/10.2147/IJN.S124294

Ottoni, C. A., Simões, M. F., Fernandes, S., Dos Santos, J. G., Da Silva, E. S., de Souza, R. F. B., and Maiorano, A. E. (2017). Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express, 7(1), 1-10. DOI: https://doi.org/10.1186/s13568-017-0332-2

Rahimi, G., Alizadeh, F., and Khodavandi, A. (2016). Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Tropical Journal of Pharmaceutical Research, 15(2), 371-375

Rahimi, G., Alizadeh, F., and Khodavandi, A. (2016). Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Tropical Journal of Pharmaceutical Research, 15(2), 371-375. DOI: https://doi.org/10.4314/tjpr.v15i2.21

Rauwel, P., Küünal, S., Ferdov, S., and Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015. DOI: https://doi.org/10.1155/2015/682749

Silva, L. P. C., Oliveira, J. P., Keijok, W. J., da Silva, A. R., Aguiar, A. R., Guimarães, M. C. C., ... and Braga, F. R. (2017). Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. International journal of nanomedicine, 12, 6373. DOI: https://doi.org/10.2147/IJN.S137703

Teerawattanapong, N., Kengkla, K., Dilokthornsakul, P., Saokaew, S., Apisarnthanarak, A., and Chaiyakunapruk, N. (2017). Prevention and control of multidrug-resistant gram-negative bacteria in adult intensive care units: a systematic review and network meta-analysis. Clinical Infectious Diseases, 64(suppl_2), S51-S60 DOI: https://doi.org/10.1093/cid/cix112

Vivas, R., Barbosa, A. A. T., Dolabela, S. S., and Jain, S. (2019). Multidrug-resistant bacteria and alternative methods to control them: an overview. Microbial Drug Resistance, 25(6), 890-908. DOI: https://doi.org/10.1089/mdr.2018.0319

Wu, D., Fan, W., Kishen, A., Gutmann, J. L., and Fan, B. (2014). Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. Journal of endodontics, 40(2), 285-290. DOI: https://doi.org/10.1016/j.joen.2013.08.022

Yuan, Y. G., Peng, Q. L., and Gurunathan, S. (2017). Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. International journal of molecular sciences, 18(3), 569. DOI: https://doi.org/10.3390/ijms18030569

Downloads

Published

2022-03-29

How to Cite

M. Madhloom, A., & M. Alrufae, M. (2022). Biosynthesis of Silver nanoparticles using Trichosporon asahii and study their antibacterial and synergism effects. Al-Kufa University Journal for Biology, 14(1), 70–77. https://doi.org/10.36320/ajb/v14.i1.11753

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.