Review in The Biological applications of glycolipids liquid crystals

Authors

  • Nuha Salem Kareem Department of Chemistry, Faculty of Science, University of Kufa, An-Najaf, Iraq
  • Shaymaa A. Mohammed Department of Chemistry, Faculty of Science, University of Muthana, Al-Samawa, Iraq

DOI:

https://doi.org/10.36320/ajb/v14.i1.11740

Keywords:

Biological applications, glycolipids liquid crystals, biosurfactants, antibacterial

Abstract

Glycolipids are essential components in the most living systems cells. They can playing different roles and activities inside and outside the bilayer membrane that surrounding the cells. They consider as biosurfactants because their structure that is contain polar head groups and the other accompany part the non-polar long-chain alcohols. In this context, these bio-surfactants can found in different phases in lyotropic liquid crystalline properties and therefore, many actions that related to these phases can offer a wide-range of roles like antibacterial, antifungal anti-cancer and antenna for most recognition of the materials that affected the cell membranes. 

Downloads

Download data is not yet available.

References

S. Cockcroft, “Mammalian lipids: structure, synthesis and function,” Essays Biochem., vol. 0, no. August, pp. 1–33, 2021, doi: 10.1042/ebc20200067. DOI: https://doi.org/10.1042/EBC20200067

M. V Douglass, F. Cléon, and M. S. Trent, “Cardiolipin aids in lipopolysaccharide transport to the gram-negative outer membrane.,” Proc. Natl. Acad. Sci. U. S. A., vol. 118, no. 15, Apr. 2021, doi: 10.1073/pnas.2018329118. DOI: https://doi.org/10.1073/pnas.2018329118

T. R. Bjerk, C. Severino, Patricia Jain, Sona , Marques, A. M. Silva, and E. B. Pashirova, Tatiana Souto, “Biosurfactants: Properties and Applications in Drug Delivery, Biotechnology and Ecotoxicology,” Bioengineering, vol. 8, no. 8, p. 115, 2021, doi: 10.3390/bioengineering8080115. DOI: https://doi.org/10.3390/bioengineering8080115

R. Hashim, H. H. A. Hashim, N. Z. M. Rodzi, R. S. D. Hussen, and T. Heidelberg, “Branched chain glycosides: Enhanced diversity for phase behavior of easily accessible synthetic glycolipids,” Thin Solid Films, vol. 509, no. 1, pp. 27–35, 2006, doi: https://doi.org/10.1016/j.tsf.2005.09.009. DOI: https://doi.org/10.1016/j.tsf.2005.09.009

S. Abeygunaratne, A. Jákli, G. Milkereit, H. Sawade, and V. Vill, “Antiferroelectric ordering of amphiphilic glycolipids in bent-core liquid crystals,” Phys. Rev. E, vol. 69, no. 2, p. 21703, Feb. 2004, doi: 10.1103/PhysRevE.69.021703. DOI: https://doi.org/10.1103/PhysRevE.69.021703

N. I. Zahid and T. Abou-zied, Osama K Hashim, Rauzah , Heidelberg, “Fluorescence Probing of the Temperature-Induced Phase Transition in a Glycolipid Self-Assembly: Hexagonal ↔ Micellar and Cubic ↔ Lamellar,” Langmuir, vol. 28, no. 11, pp. 4989–4995, 2012. DOI: https://doi.org/10.1021/la3001976

A. Taylor, Publisher Liao, G Zewe, S K Hagerty, J Hashim, R Abeygunaratne, S Vill, V Jákli, “Thermotropic liquid crystalline properties of amphiphilic branched chain glycolipids,” no. October, pp. 37–41, 2014, doi: 10.1080/02678290600563112. DOI: https://doi.org/10.1080/02678290600563112

I. M. López-Lara and O. Geiger, “Bacterial lipid diversity,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1862, no. 11, pp. 1287–1299, Nov. 2017, doi: 10.1016/J.BBALIP.2016.10.007. DOI: https://doi.org/10.1016/j.bbalip.2016.10.007

K. Garidel, Patrick Kaconis, Yani Heinbockel, Lena Wulf, Matthias Gerber, Sven Munk, Ariane Vill, Volkmar and Brandenburg, “Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications,” Open Biochem. J., vol. 9, pp. 49–72, Aug. 2015, doi: 10.2174/1874091X01509010049. DOI: https://doi.org/10.2174/1874091X01509010049

F. Dumoulin, D. Lafont, and J. W. Boullanger, Paul Mackenzie, Grahame Mehl, Georg H Goodby, “Self-Organizing Properties of Natural and Related Synthetic Glycolipids,” J. Am. Chem. Soc., vol. 1, no. 6, pp. 13737–13748, 2002. DOI: https://doi.org/10.1021/ja020396+

G. Howe, Jörg Garidel, Patrick Wulf, Matthias Gerber, Sven Milkereit and K. Vill, Volkmar Roessle, Manfred Brandenburg, “Structural polymorphism of hydrated monoacylated maltose glycolipids,” Chem. Phys. Lipids, vol. 155, no. 1, pp. 31–37, Sep. 2008, doi: 10.1016/J.CHEMPHYSLIP.2008.07.002. DOI: https://doi.org/10.1016/j.chemphyslip.2008.07.002

I. N. A. Van Baccile, Niki Cuvier, Anne-Sophie Valotteau, Claire Bogaert, “Practical methods to reduce impurities for gram-scale amounts of acidic sophorolipid biosurfactants,” Eur. J. Lipid Sci. Technol., vol. 115, no. 12, pp. 1404–1412, Dec. 2013, doi: 10.1002/EJLT.201300131. DOI: https://doi.org/10.1002/ejlt.201300131

A. R. N. M. Abeyrathne, A. D. L. C. Perera, and D. N. Karunaratne, “Surfactant behaviour of five carbohydrate liquid crystals,” J. Natl. Sci. Found. Sri Lanka, vol. 41, no. 3, pp. 185–194, 2013. DOI: https://doi.org/10.4038/jnsfsr.v41i3.6055

S. A. Sazalee, N. Ahmad, and R. Hashim, “Investigation of Self-Assembly Properties and the Effect of Tween Series Co-surfactants on the Stability of Nonionic Branched-Chain Glycolipid,” Colloids Surfaces A Physicochem. Eng. Asp., 2017, doi: 10.1016/j.colsurfa.2017.05.085. DOI: https://doi.org/10.1016/j.colsurfa.2017.05.085

L. Yang, Zonglong Xu, Rui Ali-rachedi, Fahima Chambert, Stéphane Nuno, M Soulère, Laurent Ahmar, Mohammed Mackenzie, Grahame Edward, J Goodby, John W Cowling, Stephen J Queneau, Yves Soulère et al., “Liquid crystalline glycosteroids and acyl steroid glycosides ( ASG ),” Liq. Cryst., vol. 00, no. 00, pp. 1–19, 2017, doi: 10.1080/02678292.2017.1346211. DOI: https://doi.org/10.1080/02678292.2017.1346211

C. De Wachter, L. Van Landuyt, and N. Callewaert, “Engineering of Yeast Glycoprotein Expression,” Adv. Biochem. Eng. Biotechnol., vol. 175, pp. 93–135, 2018, doi: 10.1007/10_2018_69. DOI: https://doi.org/10.1007/10_2018_69

J. W. Goodby, B. Pfannemüller, W. Welte, E. Chin, and J. W. Goodby, “Liquid ‐ crystalline glycolipids : towards understanding the roles of liquid crystals in biological and life processes Liquid-crystalline glycolipids : towards understanding the roles of liquid crystals in biological and life processes,” Liq. Cryst., no. November, pp. 37–41, 2014, doi: 10.1080/02678290601140480. DOI: https://doi.org/10.1080/02678290601140480

P. Taylor and F. C. Vill, VolkmarBöcker, Thomas Thiem, Joachim Fischer, “The stereochemistry of glycolipids . A key for understanding membrane functions ? The stereochemistry of glycolipids . A key for understanding membrane functions ?,” Liq. Cryst., vol. 33, no. 11–12, pp. 37–41, 2014, doi: 10.1080/02678290601140571. DOI: https://doi.org/10.1080/02678290601140571

J. M. Seddon and D. A. Zeb, Neelofar Templer, Richard H Mcelhaney, Ronald N Mannock, “An Fd 3 m Lyotropic Cubic Phase in a Binary Glycolipid / Water System,” Langmuir, vol. 7463, no. 8, pp. 5250–5253, 1996. DOI: https://doi.org/10.1021/la960664f

A. Martinez-Felipe, T. S. Velayutham, and R. Aripin, Nurul Fadhilah Kamalul Yusoff, Marina Farquharson, Emma Hashim, “Glycolipids from natural sources: dry liquid crystal properties, hydrogen bonding and molecular mobility of Palm Kernel oil mannosides,” Liq. Cryst., vol. 47, no. 8, pp. 1180–1194, Jun. 2020, doi: 10.1080/02678292.2020.1750719. DOI: https://doi.org/10.1080/02678292.2020.1750719

K. Sabah, T. Heidelberg, and R. Hashim, “Novel crown ethers on glucose based glycolipids.,” Carbohydr. Res., vol. 346, no. 7, pp. 891–6, May 2011, doi: 10.1016/j.carres.2011.03.002. DOI: https://doi.org/10.1016/j.carres.2011.03.002

W. V. Dahlhoff, “Amphiphilic carbohydrate-based mesogens, VI. Synthesis of a series of alkyl 1-thio-D-glucopyranosides and their regioselective reductions to 1-alkylthio-1-deoxy-D-glucitols,” Liebigs Ann. der Chemie, vol. 1990, no. 10, pp. 1025–1027, Oct. 1990, doi: 10.1002/JLAC.1990199001185. DOI: https://doi.org/10.1002/jlac.1990199001185

C. A. Ericsson, L. C. Ericsson, V. Kocherbitov, O. Söderman, and S. Ulvenlund, “Thermotropic phase behaviour of long-chain alkylmaltosides,” Phys. Chem. Chem. Phys., vol. 7, no. 15, pp. 2970–2977, Jul. 2005, doi: 10.1039/B502922H. DOI: https://doi.org/10.1039/b502922h

N. I. Zahid, O. K. Abou-zied, and R. Hashim, “Evidence of Basic Medium in the Polar Nanochannels of the Inverse Bicontinuous Cubic Phase of a Guerbet Glycolipid: A Steady-State and Time-Resolved Fluorescence Study,” J. Phys. Chem. B, vol. 117, no. 50, pp. 26636–26643, 2013. DOI: https://doi.org/10.1021/jp4087688

C. Tschierske, “Liquid crystalline materials with complex mesophase morphologies,” . Curr. Opin. Colloid Interf. Sci., vol. 7, pp. 69–80, 2002. DOI: https://doi.org/10.1016/S1359-0294(02)00014-6

K. V. Axenov and S. Laschat, “Thermotropic Ionic Liquid Crystals,” Materials (Basel)., vol. 4, no. 12, pp. 206–259, 2011, doi: 10.3390/ma4010206. DOI: https://doi.org/10.3390/ma4010206

A. S. Sonin, “Inorganic lyotropic liquid crystals,” J. Mater. Chem., vol. 8, no. 12, pp. 2557–2574, 1998, doi: 10.1039/A802666A. DOI: https://doi.org/10.1039/a802666a

B. Donnio, J. M. Seddon, and R. Deschenaux, “A Ferrocene-Containing Carbohydrate Surfactant: Thermotropic and Lyotropic Phase Behavior,” Organometallics, vol. 19, no. 16, pp. 3077–3081, Aug. 2000, doi: 10.1021/om0001568. DOI: https://doi.org/10.1021/om0001568

V. Faivre and V. Rosilio, “Interest of glycolipids in drug delivery: from physicochemical properties to drug targeting,” Expert Opin. Drug Deliv., vol. 7, no. 9, pp. 1031–1048, Sep. 2010, doi: 10.1517/17425247.2010.511172. DOI: https://doi.org/10.1517/17425247.2010.511172

B. J. Forrest and L. W. Reeves, “New lyotropic liquid crystals composed of finite nonspherical micelles,” Chem. Rev., vol. 81, no. 1, pp. 1–14, Feb. 1981, doi: 10.1021/cr00041a001. DOI: https://doi.org/10.1021/cr00041a001

R. Tanbour, “Drug delivery systems based on polymeric micelles and ultrasound: A review,” Curr. Pharm. Des., vol. 22, no. 19, pp. 2796–2807, 2016. DOI: https://doi.org/10.2174/1381612822666160217125215

X. Lu, L. Fan, C. Song, Z. Xu, Y. Hu, and R. Guo, “Lubrication and Dynamically Controlled Drug Release Properties of Tween 85/Tween 80/H2O Lamellar Liquid Crystals,” Langmuir, vol. 37, no. 23, pp. 7067–7077, Jun. 2021, doi: 10.1021/acs.langmuir.1c00659. DOI: https://doi.org/10.1021/acs.langmuir.1c00659

N. Sun, F. Lu, A. Mariani, S. Passerini, X. Gao, and L. Zheng, “Anion exchange membrane electrolyte preserving inverse Ia3‾d bicontinuous cubic phase: Effect of microdomain morphology on selective ion transport,” J. Memb. Sci., vol. 605, p. 118113, 2020, doi: https://doi.org/10.1016/j.memsci.2020.118113. DOI: https://doi.org/10.1016/j.memsci.2020.118113

T. Ichikawa, M. Yoshio, S. Taguchi, J. Kagimoto, H. Ohno, and T. Kato, “Co-organisation of ionic liquids with amphiphilic diethanolamines: construction of 3D continuous ionic nanochannels through the induction of liquid–crystalline bicontinuous cubic phases,” Chem. Sci., vol. 3, no. 6, pp. 2001–2008, 2012, doi: 10.1039/C2SC00981A. DOI: https://doi.org/10.1039/c2sc00981a

H. Takeuchi, T. Ichikawa, M. Yoshio, T. Kato, and H. Ohno, “Induction of bicontinuous cubic liquid-crystalline assemblies for polymerizable amphiphiles via tailor-made design of ionic liquids,” Chem. Commun., vol. 52, no. 96, pp. 13861–13864, 2016, doi: 10.1039/C6CC07571A. DOI: https://doi.org/10.1039/C6CC07571A

R. Rajabalaya, M. N. Musa, N. Kifli, and S. R. David, “Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals,” Drug Des. Devel. Ther., vol. 11, pp. 393–406, Feb. 2017, doi: 10.2147/DDDT.S103505. DOI: https://doi.org/10.2147/DDDT.S103505

D. Libster, A. Aserin, and N. Garti, “Interactions of biomacromolecules with reverse hexagonal liquid crystals: Drug delivery and crystallization applications,” J. Colloid Interface Sci., vol. 356, no. 2, pp. 375–386, 2011, doi: https://doi.org/10.1016/j.jcis.2011.01.047. DOI: https://doi.org/10.1016/j.jcis.2011.01.047

V. A. Online et al., “self-assembly in lamellar and hexagonal phases †,” pp. 15182–15190, 2016, doi: 10.1039/C6CP00583G. DOI: https://doi.org/10.1039/C6CP00583G

Downloads

Published

2022-04-29

How to Cite

Salem Kareem, N., & A. Mohammed, S. (2022). Review in The Biological applications of glycolipids liquid crystals. Al-Kufa University Journal for Biology, 14(1), 16–27. https://doi.org/10.36320/ajb/v14.i1.11740

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.